IDENTIFIKASI
BAHAN AKTIF PADA TERIPANG (Holothuria sp)
(Makalah
Bioteknologi Perikanan)
Disusun
Oleh:
1. Gito
Rollis (1114111018)
2. Widi
Indra Kesuma (1114111058)
JURUSAN
BUDIDAYA PERAIRAN
FAKULTAS
PERTANIAN
UNIVERSITAS
LAMPUNG
2012
MAKALAH
BIOTEKNOLOGI PERAIRAN
Identifikasi
Bahan Aktif pada Teripang (Holothuria sp)
Disusun
Oleh :
Gito
Rollis (Npm. 1114111018) dan Widi Indra Kesuma (Npm. 1114111058)
Jurusan
Budidaya Perairan
Fakultas
Pertanian
Universitas
Lampung
2012
Abstrak
Teripang, milik Holothuroidea,
adalah invertebrata laut, biasanya ditemukan di daerah bentik dan laut dalam di
seluruh dunia. Mereka memiliki nilai komersial yang tinggi ditambah dengan
produksi global meningkat dan perdagangan. Teripang, informal disebut sebagai
beche-de-mer, atau gamat, telah lama digunakan untuk makanan dan obat rakyat
dalam masyarakat Asia dan Timur Tengah. Nutrisi, teripang memiliki profil
mengesankan nutrisi berharga seperti Vitamin A, Vitamin B1 (tiamin), Vitamin B2
(riboflavin), vitamin B3 (niasin), dan mineral, terutama kalsium, magnesium,
zat besi dan seng. Sejumlah kegiatan biologis dan farmakologis unik termasuk
anti-angiogenik, antikanker, antikoagulan, anti hipertensi-, anti-inflamasi,
antimikroba, antioksidan, antitrombotik, antitumor, dan penyembuhan luka telah
dianggap berasal dari berbagai jenis teripang. Sifat terapeutik dan manfaat
obat teripang dapat dikaitkan dengan kehadiran beragam bioaktif terutama
glikosida triterpen (saponin), kondroitin sulfat, glikosaminoglikan (GAG),
polisakarida sulfat, sterol (glikosida dan sulfat), fenolat, cerberosides,
lektin , peptida, glikoprotein, glycosphingolipids dan asam lemak esensial.
Ulasan ini terutama dirancang untuk menutupi komponen bernilai tinggi dan
bioaktif serta sifat biologi dan terapi beberapa teripang berkaitan dengan
mengeksplorasi menggunakan potensi mereka untuk makanan fungsional dan
Nutraceuticals.
Kata kunci:
bioaktif teripang, nutrisi antioksidan,
glikosida triterpen, glikosaminoglikan, peptida fungsional, kegiatan biologi,
fungsi kesehatan obat
I.
PENDAHULUAN
1.1
Latar Belakang
Indonesia merupakan negara kepulauan terbesar di
dunia yang memiliki 17.504 pulau dan garis pantai lebih dari 81.000 km dengan
luas perairan laut sekitar 5,8 juta km2 (75% dari total Wilayah Indonesia).
Kondisi alam dan iklim yang tidak fluktuatif, menjadikan Indonesia mempunyai
potensi sumber daya laut dengan keanekaragaman hayati yang sangat besar,
walaupun belum terdayagunakan (Reina 2004).
Mengingat prospek ekonomi yang besar dari
sumbersumber hayati di laut sebagai bahan obat-obatan itu, Departemen Kelautan
dan Perikanan (DKP) menjadikan bioteknologi kelautan sebagai program unggulan
sejak tahun 2002 (Dahuri 2005).
Bioteknologi kelautan yang berkembang pesat
bertujuan memanfaatkan biota laut, salah satunya dengan ekstraksi senyawa
bioaktif sebagai obat-obatan dan bahan farmasi. Potensi teripang cukup besar
karena Indonesia memiliki perairan pantai dengan habitat teripang yang cukup
luas. Dari sekitar 650 jenis teripang yang ada didunia 10% berada di Indonesia
dan dari jumlah tersebut dipastikan ada 7 jenis yang tergolong mempunyai nilai
jual tinggi yakni teripang pasir (Holothuria Scabra), teripang hitam (Holothuroidea
Edulis), teripang coklat (Holothuroidea Marmoreta),teripang merah
(Holothuroidea Vatiensis), teripang koro (Holothuroidea Nobilis),
teripang nanas (Holothuroidea Anana) dan teripang gama ( Stichopus
Varigatus) (Yusuf, 2008).
Teripang atau timun laut (sea cucumber) adalah organisnie
laut dari philur~t Echi ~lon'ervrota, yang memiliki kandungan senyawa bioaktif
yang cukup potensial. Teripang selain merupakan bahan makanan yang lezat, juga mempunyai
senyawa sebagai anti hiotik, anti mikrobial, anti tumor, anti kougulan dan
sebagai anestasi (Berry. 1972, Hashimoto, 1979).
Sebena~ilyaa da sekitar 60 jeuis teripalig yang
11idup di laut Indonesia, tetapi ham sekitar 9 jenis yang dimanfaatkan dan 2
jenis dianraranya mempunyai nilai ekonomis tinggi, yaitu teripang pasir
(Holorhurin scarbn) dan teripang lotong (Holo~/turin nobilis) (Harjono. 1987;
Nessa dan Aral~nian, 1987).
Dari sekitar 300 senyawa hasil laut yang diduga
mempunyai pengamli bioaktif, terdapat 2 kelompok, yaitu kelompok senyawa yang
larut dalam pelarut organik (lipid solube) dan kelompok senyawa yatig larut
dalam pelarut air (water soluhe). Umumnya senyawa yaug telah diteliti iersebut
ada!ah dari kelompok yang larut dalam pelarut organik (Faulkerner, 1977 di
dalam Nashimoto, 1979).
Penelitian ini bertujuan unhtk mempelajari jenis
organisme laut dari pliilum Echinodennata yang mempunyai kandungan senyawa
bioaktif, yang juga banyak terdapat di- perairan Indonesia, diniana salah satu
diantaranya adalah teripang. Dari masing-masing bagian organ tubuh dan isi
perulnya, diharapkan akan diperoleh kandungan senyawa antibiotik, dimana baik
jumlah maupun sifahya kemungkinan terdapat perbedaan.
Dengan penelitian ini akan diketahui jenisjenis
teripang, dimaua selain dagingnya juga ada bagian tertentu yang menghasilkan
komponen bioaktif. Selanjumya dari penelitian ini diharapkan akan diperoleh
kemungkinan pe~nanfaatzn senyawa bioaktif tersebut, yang berasal dari hahan
aiami laut itu sendiri, ut~tuk ,pengawetan hasil perikanan.
1.2 Tujuan
Adapun makalah ini bertujuan unhtk mempelajari jenis
organisme laut dari pliilum Echinodennata yang mempunyai kandungan senyawa
bioaktif, yang juga banyak terdapat di- perairan Indonesia, diniana salah satu
diantaranya adalah teripang. Dari masing-masing bagian organ tubuh dan isi
perulnya, diharapkan akan diperoleh kandungan senyawa antibiotik, dimana baik
jumlah maupun sifahya kemungkinan terdapat perbedaan. Selanjumya dari
penelitian ini diharapkan akan diperoleh kemungkinan penanfaatzn senyawa
bioaktif tersebut, yang berasal dari hahan aiami laut itu sendiri, uttuk
,pengawetan hasil perikanan.
II.
METODELOGI
Metode
Penelitian
Rancangan
yang akan digunakan dalam penelitian ini adalah Rancangan Acak Lengkap (RAL)
Faktorial dengan 3 kali ulangan untuk masing-masing
perlakuan.
Yij = μ + αi + δijk + γkl+ ωl +αωil+βω jl + αβωij+ εijkl
Dimana
:
Y ijkl = nilai respon pada faktor A taraf ke-i, ulangan
ke-k dan waktu pengamatan ke-l.
μ
= rata-rata sebenarnya/rataan
umum
αi
= pengaruh faktor A taraf ke-i
δijk
= komponen acak perlakuan
γkl
= komponen acak waktu pengamatan
ωl
= pengaruh waktu pengamatan ke-l
αωil
= pengaruh interaksi waktu pengamatan
dan faktor
ijkl
= komponen acak dari interaksi waktu
dan perlakuan
Tahapan
Penelitian
Penelitian
dibagi atas 3 tahap yaitu 1) karakterisasi teripang sebagai bahan baku, 2)
ekstraksi teripang pasir dengan menggunakan metode reflux skala 600 ml, 3)
Analisis kualitatif dan kuantitatif hasil ekstrak.
Karakterisasi
teripang sebagai bahan baku
Teripang
yang akan diekstrak terlebih dahulu dikarakterisasi jenis dan umurnya
berdasarkan criteria bobot dan panjang teripang. Bobot dan panjang teripang
menggambarkan umur teripang yang sudah dewasa atau matang gonad yang dapat
diamati dari bobot (200-500 gram) dan panjangnya (25-35 cm). Teripang yang
telah memenuhi kriteria, dibersihkan dan dipisahkan antara daging dan jeroan,
dicuci dan digiling, selanjutnya dilakukan ekstraksi.
Langkah Yang Digunakan
Sebanyak
50 kg teripang, diperoleh dikumpulkan dari sekitar perairan. Selanjutnya bahan
tersebut dibawa ke laboratorium Mikrobiologi, Fakullas Perikanan, untuk di
ekstraksi. Ekstraksi dilakukan dengan meniisahkan bagian badan dan isi perut,
dengan menggunakan motoda Qiunn (1988). Sebanyak 200 gr bahan (bagian badan
atau bagian isi perut), dicampur dengan pelarut (aseton atau tiietanol) dan dihomogenkan
dengan blender sampai halus.
Dilakukan
pengadukan selama 12 jam dengan magnetic stirrer. Setelah itu ekstrak disaring
dengan menggunakan kain kasa, dan filtratnya disentrifuse pada kecepatan 6000
rpm selama 15 menit pada suhu 0°C. Supermatan yang diperoleh ditampung
dalam Erlenmeyer.
Pelarutnya
kemudian di uapkan dengan menggunakan vaccum rotavapor pada suhu 35-41°C,
selama 8 jam atau sampai pekat. Selanjutnya dilakukan pengeringan dengan freeze
dryer. Hasil ekstrak kasar kering ini, kemudian disimpan/dikumpulkan dan di
simpan dalam freezer, sebelum pemurnian atau untuk uji sifat antibiotiknya.
Uji
aktifitas bioaktifdiantaranya adalah uji aktifitas anti Bakteri, dengan
menggunakan Excherechia coli(ATIC 25922) dan Stophylocnecus cureus (ATCC 25923).
Media
agar disiapkan dengan cara menimbang beberapa gram nutrient agar, dilarutkan
dalam 1000 ml air dengan pH 6,8, kemudian dipanaskan sampai mendidih.
Selanjutnya disterilisasi dalam autoklaf pada suhu 121°C
selama 15 menit, dengan tekanan 1,4 atm. Sebanyak 15 ml agar dituangkan kedalam
cawan petri yang sudah diberi suspense Bakteri.
Ekstrak
dari bahan senyawa bioaktif dilarutkan dengan aquades, sehingga konsentrasi
ekstrak mencapai 10% dan selanjutnya di teteskan sebanyak 1 cc kedalam cawan
petri yang telah berisi Bakteri. Kemudian cawan petri dimasukkan kedalam
incubator pada suhu 37°C. pengamatan penghambat koloni
dilakukan pada selang waktu 24,48 dan 72 jam.
Untuk
mengetahui kekuatan anti biotic ke-2 jenis ekstrak dari bagian organ teripang
tersebut dilakukan masing-masing sebanyak 2 kali pengamatan.
III.
PEMBAHASAN
Teripang
atau timun laut (sea cucumber) adalah organisnie laut dari philur~t Echi-~lon'ervrota,
yang memiliki kandungan senyawa bioaktif yang cukup potensial. Teripang selain merupakan
bahan makanan yang lezat, juga mempunyai senyawa sebagai anti hiotik, anti mikrobial,
anti tumor, anti kougulan dan sebagai anestasi (Berry. 1972, Hashimoto, 1979).
Dari
sekitar 300 senyawa hasil laut yang diduga mempunyai pengaruh bioaktif,
terdapat 2 kelompok, yaitu kelompok senyawa yang larut dalam pelarut organik
(lipid solube) dan kelompok senyawa yang larut dalam pelarut air (water soluhe).
Umumnya senyawa yaug telah diteliti tersebut adalah dari kelompok yang larut dalam
pelarut organik (Faulkerner, 1977 di dalam Nashimoto, 1979).
Dari
penelitian yang telah dilakukan, dapat diketahui berbagai jenis bahan aktif
dalam teripang, diantaranya yaitu:
Anti-angiogenik
Teripang telah muncul sebagai sumber
potensial dari agen anti-angiogenik dan anti-tumor kepentingan medis.
Penelitian terbaru mengungkapkan potensi anti kanker dari teripang yang
diturunkan bioaktif terhadap kanker tertentu. Tian et al (2005). Diperiksa
in vivo dan in vitro fungsi anti-angiogenik dan anti-tumor dari E
philinopside senyawa baru diidentifikasi (PE) dari teripang. Mereka dinilai melalui
dalam angiogenesis potensial percobaan in vitro penghambatan
senyawa menggunakan tes yang berbeda seperti proliferasi, adhesi, migrasi,
pembentukan tabung-dan apoptosis pada PE-diperlakukan sel endotel vena
umbilikalis manusia (HUVECs) dan manusia sel endotel mikrovaskuler (HMECs).
Selain itu, mereka menggunakan in vivo, chorioallantoic membran (CAM)
tes untuk memeriksa aktivitas PE-hambatan pada angiogenesis fisiologis. Selain
itu, para peneliti menggunakan teknik western blotting untuk menilai kemanjuran
PE pada faktor pertumbuhan endotel vaskular (VEGF) menghubungkan Biosignal di
HMECs. Hasil penelitian menunjukkan bahwa PE menghambat jauh proliferasi HMECs
dan HUVECs, IC 50 2.22 ± 0,31 pM dan 1,98 ± 0,32 pM, masing-masing
dan diinduksi apoptosis sel endotel pada jumlah kurang dari 2 pM, menunjukkan
penekanan konsentrasi-tergantung dari migrasi sel dan sel adhesi serta
pembentukan tabung dalam HUVECs dan HMECs. Demikian pula, dalam uji in vivo
CAM, PE (5 nM / telur) menunjukkan penindasan angiogenesis spontan, dan
dipamerkan hambatan pertumbuhan jauh di mouse eksperimental (sarkoma 180 dan
hepatoma 22) model. Hasil ini menunjukkan bahwa PE dapat dieksplorasi sebagai
agen anti-angiogenik yang efisien, untuk menekan (terfosforilasi) aktif bentuk
vaskular reseptor faktor pertumbuhan endotel yang terlibat dalam kelangsungan
hidup sel endotel, proliferasi adhesi, dan migrasi.
Dalam studi lain, aktivitas
anti-angiogenik dari saponin sulfat yang baru terisolasi yaitu Philinospide A,
dari teripang (Pentacta quadrangulari), telah diuji terhadap angiogensis
dan pertumbuhan tumor dengan Tong et al. (2005). Dalam serangkaian di
vitro dan in vivo model. Para peneliti mencatat bahwa
teripang-berasal Philinospide A pameran anti-angiogenik efek pada manusia sel
endotel mikrovaskuler (HMECs) menunjukkan penggunaannya sebagai agen antikanker
yang menjanjikan. Selain itu, ia memiliki efek sitotoksik dan antiangiogenic
ganda, yang mungkin dikaitkan dengan potensi penghambatan untuk tirosin kinase
reseptor (RTKs). Fucosylated kondroitin sulfat adalah senyawa lain, yang
diidentifikasi dalam bunga dan dinding tubuh teripang. Senyawa ini menawarkan aktivitas antiangiogenic baik, sebanding dengan
kontrol positif, hidrokortison / heparin, dan bahkan lebih tinggi dari tulang
rawan ikan hiu condroitin-6-sulfat.
Antikanker / antiproliferasi
Teripang dilaporkan mengandung
beberapa senyawa dengan sifat antikanker dan antiproliferatif.
Aktivitas antikanker dari tiga
glikosida triterpen, intercedensides A, B, dan C terisolasi dari teripang (Mensamaria
intercedens) telah dievaluasi oleh Zou et al. Para glikosida
triterpen terisolasi secara struktural dijelaskan dengan menggunakan analisis kimia
dan pendekatan NMR dan ESIMS spektroskopi. Menurut hasil penelitian, senyawa
triterpen yang diberikan dipamerkan sitotoksisitas terhadap manusia garis sel
tumor dan dengan demikian bisa berfungsi sebagai agen antikanker yang
potensial. Salah satu senyawa, intercedenside A juga menunjukkan fungsi
antineoplastik baik terhadap tikus S180 sarkoma dan mouse kanker paru-paru
Lewis.
Ekstrak air panas dari teripang (Stichopus
japonicas) diuji untuk efek mereka pada proliferasi dan H 2 O 2
kerentanan adenokarsinoma kolon manusia Caco-2 sel. Pertumbuhan Caco-2 sel
secara signifikan dihambat oleh perlakuan ekstrak. Ekstrak diuji menunjukkan
tergantung konsentrasi cytotoxity ke Caco-2 sel. Kerusakan sel oleh ekstrak
teripang tampak jelas di atas 1 mg / mL. Selain itu, penggunaan bersama ekstrak
teripang mengintensifkan H 2 O 2 sitotoksisitas. Studi
lain mengungkapkan isolasi dasar sphingoid dari teripang (Stichopus
variegatus) cerberosides bersama dengan efek sitotoksik mereka terhadap
manusia garis sel kanker usus besar. Para cerebrosides terisolasi diperiksa
untuk struktur kimianya menggunakan informasi massa spektroskopi dan ditemukan
memiliki rantai C17 sampai C19 alkil bercabang ditambah dengan 1 sampai 3
ikatan rangkap menanamkan fitur karakteristik untuk teripang sphingoid
dibandingkan dengan mereka yang berasal dari mamalia. Basis teripang sphingoid
menunjukkan aktivitas cytotxic kuat terhadap sel-sel kanker (DLD-1, WiDr dan
Caco-2 sel) mengurangi kelangsungan hidup mereka dengan cara yang tergantung
konsentrasi. Kegiatan ini adalah sebanding dengan sphingosine-sel diobati.
Senyawa diuji memicu perubahan morfologi sebagai fragmen kromatin kental serta
meningkatkan aktivitas caspase-3, mendukung fakta bahwa basis sphingoid dapat
mengurangi viabilitas sel dengan menyebabkan apoptosis. Disarankan bahwa
teripang yang diturunkan sphingolipids bioaktif bisa berfungsi sebagai komponen
makanan fungsional untuk mengurangi kejadian kanker usus besar.
Silchenko et al (2007)
juga mempelajari aktivitas antikanker dari tiga oligoglycosides triterpene
baru, okhotosides B1, B2, dan B3, terisolasi dari teripang (okhotensis
Cucumaria), bersama dengan senyawa yang dikenal frondoside A,
cucumarioside A2-5 , dan koreoside A. Mereka menggunakan 2-D NMR dan MS untuk
menjelaskan struktur okhotosides B1-3 berdasarkan data spektroskopi didirikan.
Hasil mereka menunjukkan bahwa senyawa 1-3 itu cukup beracun terhadap sel tumor
HeLa, tapi Frondoside A menunjukkan efek yang lebih sitotoksik terhadap THP-1
dan garis sel tumor HeLa. Demikian pula, triterpenoid novel, frondoside A,
berasal dari laut berbasis spesies teripang Atlantik frondosa yaitu Cucumaria
telah dilaporkan menunjukkan penghambatan fungsi pertumbuhan efektif melawan
sel-sel kanker pankreas manusia. Potensi penghambatan proliferasi diikuti oleh
besarnya apoptosis ditandai. Senyawa diuji (Frondoside A) yang seharusnya untuk
menginduksi apoptosis melalui jalur mitokondria dan aktivasi kaskade.
Althunibat et al (2009)
meneliti efek ekstrak air dan organik dari tiga spesies (Holothuria
leucospilota, Holothuria scabra, Stichopus chloronotus) dari teripang,
pada pertumbuhan dua sel kanker manusia: A549 (manusia non-kecil paru-paru
karsinoma) dan C33A (sel kanker serviks) menggunakan MTT assay. Dari ekstrak
diuji, hanya S. chloronotus yang diturunkan ekstrak
menunjukkan aktivitas antiproliferatif terhadap garis kanker sel diuji.
Sebaliknya ekstrak, air (AE) dari S. chloronotus dipamerkan
toksisitas lebih terhadap sel C33A (IC 50 = 10,0 mg / mL) dari A549,
sedangkan AE dihasilkan dari H. leucospilota dan H. scabra
mengungkapkan tidak ada tindakan penting pada pertumbuhan sel-sel kanker dalam
konsentrasi membatasi digunakan. Di sisi lain, ekstrak teripang dihasilkan oleh
pelarut organik menghambat pertumbuhan kedua jalur sel (A549 dan C33A) untuk
berbagai derajat. Ekstrak organik (OE) dari H. spesies scabra
menawarkan aksi antiproliferatif lebih besar terhadap A549 dan sel C33A dengan
IC 50 nilai-nilai, 15,5 mg / mL dan 3,0 mg / mL, masing-masing.
Selanjutnya, The OE dari S. chloronotus menunjukkan
sitotoksisitas terhadap sel lebih C33A (IC 50 = 6,0 mg / mL) sedikit
tindakan terhadap sel A549 (IC 50 = 21,0 mg / mL). Fungsi
antiproliferatif dan antikanker dari ekstrak teripang dapat berasal kehadiran
sejumlah besar fenol total dan flavonids yang dinilai sebagai antioksidan yang
efektif untuk melindungi dari stres oksidatif dan penyakit degeneratif,
termasuk kanker tertentu.
Janakiram et al. (2010)
menilai efek chemopreventive dari frondanol A, glikolipid terisolasi dari
teripang (Cucumaria frondosa), terhadap azoxymethane-induced usus
tikus karsinogenesis. Mereka menggunakan ACF (aberrantcolonic crypt foci)
sebagai penanda keberhasilan untuk menilai tingkat proliferasi ekspresi selama
penelitian ini. Selain itu, efek pertumbuhan-hambat dan apoptosis frondanol
Sebuah rentang konsentrasi lebih dari 10-120 mg / mL menggunakan HCT-116 garis
sel juga dipelajari. Teripang yang diturunkan frondanol A menunjukkan aktivitas
pertumbuhan-hambat dan apoptosis sangat baik menyarankan penggunaan hewan ini sebagai
bahan untuk makanan fungsional dan Nutraceuticals.
Dua glikosida triterpen sulfat
yaitu holothurin A (HA) dan 24-dehydroechinoside A (DHEA), telah diidentifikasi
dalam spesies teripang (Pearsonothuria graeffei) oleh Zhao et al.
(2010). Kedua glikosida dipamerkan pengaruh yang cukup besar pada metastasis in
vitro dan in vivo. Analisis immunocytochemical mengungkapkan
bahwa kedua HA dan DHEA secara signifikan menekan ekspresi matriks
metallo-proteinase-9 (MMP-9) serta meningkatkan tingkat ekspresi inhibitor
jaringan metaloproteinase-1 (TIMP-1). TIMP-1 adalah tombol pengatur untuk MMP-9
aktivasi. Menurut data analisis Western blot, baik HA dan DHEA sangat menekan
ekspresi VEGF (faktor pertumbuhan endotel vaskular). Kedua HA dan DHEA
pengobatan sangat mengurangi adhesi manusia sel karsinoma hepatoseluler hati
(HepG2) untuk kedua Matrigel dan sel endotel manusia (ECV-304) dan juga
menghambat HepG2 migrasi sel dan invasi dalam modus tergantung konsentrasi.
Selain itu, pengobatan HA bawah diatur tingkat ekspresi NF-kB, yang mungkin
terkait dengan aktivitas antimetastatic glikosida triterpen berasal dari Pearsonothuria
graeffei.
Anti-koagulan
Sifat antikoagulan dari teripang
(Ludwigothurea grisea) terkait dengan kehadiran kondroitin sulfat
fucosylated di dinding tubuh hewan laut ini. Senyawa ini memiliki kondroitin
sulfat seperti inti yang mengandung rantai samping terdiri dari α-L
fucose-sulfat terpasang di Carbon-3 posisi asam β-D-glukuronat. Selama
thromboplast parsial diaktifkan dalam tes waktu (APTT), senyawa yang diberikan
menunjukkan aktivitas antikoagulan yang sangat baik yang dapat dianggap berasal
dari kemampuan untuk memulai penghambatan trombin oleh II kofaktor heparin dan
antithrombin. Perbandingan antara hasil dimodifikasi secara kimia (desulfated,
karboksil-berkurang, dan parsial defucosylated) dan polisakarida asli
menunjukkan bahwa cabang fucose sisi sulfat, memainkan peran penting dalam
menanamkan sifat antikoagulan yang lebih baik untuk kondroitin sulfat
fucosylated (FCS). Selain itu, aktivitas antikoagulan yang kuat dari FCS,
ditambah dengan efek samping yang mungkin tidak ada, membuat polisakarida ini
molekul menarik untuk aplikasi potensial dalam pengujian trombosis eksperimental
pada tingkat klinis.
Mulloy et al (2000)
diselidiki bahwa laut sulfat mentimun-terisolasi fucosylated chondroitin (FCS),
menjadi semacam polysacchahers sulfat, memiliki aktivitas antikoagulan ampuh.
Mereka menggunakan NMR spektroskopi untuk menjelaskan struktur FSC. Hasilnya
menunjukkan bahwa aktivitas antikoagulan dari FSC terutama tergantung pada
cabang sulfat yang fucose tetapi perubahan kecil dalam struktur penentu sulfat
dapat menyebabkan hilangnya hampir semua tindakan antikoagulan, terlepas dari adanya
tingkat tinggi sulfation. Dalam studi lain, para peneliti menyelidiki aksi
antikoagulan / antitrombotik dari teripang dinding tubuh yang diturunkan FCS,
dan turunan kimia dari polisakarida yang sama, menggunakan model trombosis
stasis pada kelinci. Telah ditemukan bahwa kedua defucosylation parsial dan
desulfation dari polisakarida menekan aksi antikoagulan mereka.
Beberapa fraksi baru telah
dihasilkan dari teripang (Thelenota ananas) yang diturunkan
fucosylated kondroitin sulfat oleh Wu et al. (2010) melalui proses
deploymerization. Fraksi baru dikembangkan, dengan berbagai tetapi distribusi
berat molekul yang sempit, yang ditandai untuk karakteristik fisikokimia dengan
menggunakan FT-IR dan data NMR spektral. Hasil dikonfirmasi struktur utama dari
fraksi untuk dipertahankan setelah depolimerisasi tersebut. Selanjutnya, para
peneliti menguji aktivitas antikoagulan dari fraksi diproduksi menggunakan
thromboplast parsial diaktifkan dalam waktu dan menemukan bahwa aktivitas APTT
menurun secara berat molekul tergantung mengikuti fungsi logaritma seperti.
Dibandingkan dengan dosis tinggi rendah-molekul fraksi berat heparin (LMWH),
fraksi berat molekul lebih diinginkan (13.950 Da) menunjukkan aksi antikoagulan
lebih rendah. Oleh karena itu, fraksi menunjukkan efikasi lebih sebagai agen
antitrombotik menawarkan risiko perdarahan kurang relatif terhadap LMWH.
Anti-Fatigue Immune dan Fungsi
Laut polipeptida mentimun telah
menunjukkan fungsi anti-kelelahan dan kekebalan yang signifikan pada tikus,
mereka tidak menunjukkan efek yang jelas pada berat badan pada tikus, secara
signifikan memperpanjang waktu dimuat-berenang dan tongkat bergulir, sangat
terdegradasi isi nitrogen urea darah dan meningkatkan konten glikogen hati
tikus latihan posting. Liu et al. (2009) mempelajari fungsi
anti-kelelahan dan kekebalan cairan teripang lisan dengan menentukan waktu
loading renang dan darah asam laktat dan glikogen hati tikus. Temuan mereka
menunjukkan bahwa saat berenang dari tikus, diberikan dengan cairan oral,
dibandingkan dengan kelompok kontrol, secara signifikan berkepanjangan sehingga
meningkatkan isi hati glikogen (P <0,01). Juga, setelah berenang di
kelompok uji, dosis tinggi dari cairan oral, asam laktat darah isi dari tikus
secara signifikan menurun (P <0,01). Hasil mendukung bahwa teripang
cairan oral memiliki terlihat anti-kelelahan efek.
Komposisi bioaktif dari teripang
berbudaya (Stichopus japonicus) dan anti-kelelahan efek pada tikus
telah dijelaskan oleh Bing et al. (2010). The body wall of S.
japonicus was found to be rich in acidic mucopolysaccharides, collagen,
bioactive amino acids and lipids. In comparison with the control group,
administration with Stichopus japonicus , for 30 consecutive days,
prolonged the duration of exhaustive swimming in mice, promoted the synthesis
of liver glycogen and hemoglobin and also kept the level of hemoglobin (90 min
post-swimming) similar to that of before swimming. It also significantly
decreased the generation of blood lactic acid and accelerated the elimination
of blood lactic acid and blood urea nitrogen in mice after swimming thus
improving the exercise endurance in mice. Based on these findings, it could be
concluded that the trepang has an appreciable anti-fatigue activity.
Anti-Hypertension and Angiotensin Converting Enzyme (ACE) Inhibition
Currently, sea cucumbers are
gaining recognition among researchers due to their antihypertensive and ACE
inhibitory principles. In a recent work, Zhao et al. (2007)
investigated the antihypertensive effect and purified an ACE inhibitory peptide
from sea cucumber ( Acaudina molpadioidea ) gelatin hydrolysate. The
gelatin was hydrolyzed sequentially with bromelain and alcalase. The
hydrolysate was fractionated into three portions with typical molecular weight
ranges (GH-I, <10 kDa; GH-II, <5 kDa; GH-III, <1 kDa) using
ultrafiltration membrane bioreactor (UMB). Among the products, the GH-III
showed higher ACE inhibitory activity, IC 50 0.35 mg/mL. When GH-III
was used as drink administered to renal hypertensive rats (RHR) for one month,
it significantly reduced the systolic blood pressure and diastolic blood
pressure of RHR, indicating anti-hypertensive effect by oral administration.
The researchers continued their study
further with the aim of preparing hydrolysate of Acaudina molpadioidea
body wall protein with high anti-hypertensive activity. They hydrolyzed Acaudina
molpadioidea body wall protein, sequentially, with two enzymes namely
bromelain and alcalase and then fractionated the hydrolysate obtained into
components with distribution of molecular weight (2 kDa; 2 kDa) using UMBS. The
fraction 2 kDa, with superior ACE inhibitory action (IC 50 of 0.615
mg/mL) was used as drink administered to renal hypertensive rats (RHR) for 30
days. Both the systolic and diastolic blood pressures in RHR were considerably
reduced compared with the model group in a dose-dependent manner. Besides, the
anti-hypertensive effect, at dosage of 120 μg/g, was as good as for the
positive control, captopril (10 μg/g). Overall, it was noted that hydrolysate (GH-III)
produced from sea cucumber gelatin has potent ACE inhibitory ( in vitro
) activity and anti-hypertensive ( in vivo ) effects which might have
been due to presence of highly bioactive ACE inhibitory peptide.
In another study, Zhao et
al. (2009), isolated a novel ACE inhibitory peptide from Acaudina
molpadioidea hydrolysate. The hydrolysate produced was fractionated into
two parts with molecular weight range (PH-I, >2 kDa; PH-II, <2 kDa) using
an UMB. The PH-II fraction showed higher ACE inhibitory potential. From this
PH-II fraction, using various chromatographic techniques (gel filtration,
ion-exchange chromatography, RP-HPLC, etc. ), the researchers isolated
an ACE inhibitory peptide. The peptide was further purified and established to
be a novel one (sequenced as MEGAQEAQGD), showing negligible resemblance with
other ACE inhibitory peptide sequences. After incubation with gastrointestinal
proteases, the inhibitory action of the newly characterized peptide was
observed to be enhanced by 3.5 times, corresponding to decrease in IC 50
from 15.9 to 4.5 μM. The tested ACE inhibitory peptide at dosage of 3 μM/kg
demonstrated a remarkable anti-hypertensive effect in spontaneously
hypertensive rats (SHR).
The antihypertensive and
antioxidant activities ( in-vitro ) of two differently processed
Icelandic sea cucumber tissues were evaluated and compared by Hamaguchi et
al. (2010). The skin, muscle, digestive tract and respiratory tract of sea
cucumber ( Cucumaria frondosa ) were processed in different ways yielding
aqueous extract and hydrolyzates. The processed sea cucumber products were
tested for reducing power, metal ion chelating activity, and ACE activity.
According to the results, aqueous extracts, demonstrated higher ACE inhibition
compared to the hydrolysates. Different parts of the tested sea cucumber also
demonstrated varying magnitude of activities. On the other hand, hydrolysates
(process 2) showed higher ORAC (oxygen radical absorbance capacity) values than
the aqueous extracts (process 1). They suggested that the higher antioxidative
activities of hydrolysates over aqueous extracted samples might be attributed
to the presence of antioxidative peptides in addition to other endogenous
bioactives in the former case.
Anti-Inflammatory
Studies support that sea
cucumber possesses potent anti-inflammatory activity. According to Smith
(1978), polian vesicles of sea cucumber ( Holothuria cinerascens ) are
known to be the organs attributing inflammatory (including immunologic)
receptiveness. As such, they might stand for a rudimentary start of what
afterwards progressed into the vertebrate lymphoreticular system. There are
also several patents which reveal that tissue fractions of sea cucumber can be
exploited as a source of potent therapeutic agents for the treatment of
inflammation. In an in vivo study, Whitehouse and Fairlie (1994) fed
the rats of both (male and female) sexes with SeaCare (a human food supplement)
composing of dried extracts from selected species of holothurians: 95% w/w sea
cucumbers ( Holothuria nobilis , Holothuria axiologa and Stichopus
variegatus ) and 5% w/w sea plant ( Sargassum pallidum ). The
anti-inflammatory attributes were tested in rat models of inflammation. Their
results indicate that the tested supplement exhibits anti-inflammatory action
in both the sexes of rats; however its activity is somewhat lower than the
synthetic standard compound (aspirin w/w) against the acute carrageenan-induced
paw inflammation. The food supplement was found to be active against
adjuvant-induced polyarthritis in rats on a daily dose schedule.
Extracts from sea cucumber
species: ( Holothuria tubulosa , Leptogorgia ceratophyta , Coscinasterias
tenuispina and Phallusia fumigata ) have been produced using
dichloromethane and methanol by Herencia et al. (1998) to assess their
anti-inflammatory activity. The results showed that the extracts, produced with
both the solvents, were effective towards decreasing cyclo-oxygenase activity
in inflamed mice tissues but did not modify the constitutive cyclo-oxygenase
enzyme. Thus, the tested extracts can be explored as a new marine source for
novel anti-inflammatory agents.
Antimikroba
Sea cucumber extracts have been
proven as potential antimicrobial agents in several studies. Antibacterial and
antifungal activities of alcoholic extracts of Actinopyga echinites , Actinopyga
miliaris , Holothuria atra and Holothuria scabra have
been studied by Jawahar et al. (2002). The researchers found that
except Bacillus sp., other strains namely Escherichia coli , Aeromonas
hydrophila , Enterococcus sp., Pseudomonas aeruginosa , Klebsiella
pneumoniae , Staphylococcus aureus , Salmonella typhi ,
and Vibrio harveyi , and fish-generated Aspergillus sp. were
sensitive to the tested sea cucumber extracts. The antimicrobial potential of
these extracts can be ascribed to the presence of antimicrobial agents, most
probably, the steroidal sapogenins. Therefore, uses of sea cucumbers, as
potential source, for isolation of antimicrobial agents can be suggested. In
another study, Ridzwan et al. (1995) evaluated the antibacterial
activity of the extracts from sea cucumbers harvested from coastal areas of
Sabah (Malaysia) using in vitro tests. According to their results,
both the extracts, the lipid fraction and methanol fraction, derived from sea
cucumber species, Holothuria scabra , Holothuria atra and Bohadshia
argus did not show considerable antibacterial action. However, PBS
(phosphate-buffered saline) derived from B. argus and H. atra
, exhibited significant antimicrobial activity and inhibited the growth of all
the tested gram-negative and gram-positive bacteria. The extracts obtained from
the outer part of Holothuria atra , compared to inner parts, showed
weak antimicrobial action.
Antimicrobial activity of the
extracts from different body parts of sea cucumber, ( Cucumaria frondosa
), the common starfish ( Asterias rubens ), and green sea urchin ( Strongylocentrotus
droebachiensis ) has been examined by Haug et al.. The eggs from Cucumaria
frondosa offered relatively higher antibacterial activity. Several tissues
from A. rubens exhibited lysozyme-like action, whereas hemolytic
activity being observed in almost all the species analyzed. Especially, the
body wall has more powerful extracts. A wide variation of bioactivities among
the extracts suggests that a variety of substances are capable of antimicrobial
functionalities. Therefore, marine echinoderms can be explored as a sustainable
natural source for the discovery of novel antibiotic compounds.
In another activity guided
research by Kumar et al. (2007), methanol extract of sea cucumber ( Actinopyga
lecanora ) showed promising antifungal activity, in vitro . A new
triterpene glycoside, along with two known glycosides, named holothurin B and
holothurin A, have been identified in n -butanol fractions using
repeated column chromatographic fractionation process. Overall, holothurin B
showed better in vitro antifungal activity against 20 fungal isolates
tested including the strain ATCC. Sea cucumber ( Actinopyga lecanora )
- based natural products have been recognized to act as a promising
source for isolation and identification of antifungal substances. Therefore,
sea cucumber-derived holothurin B could be searched as a lead molecule for
further development of a potent antifungal drug against infectious diseases.
Farouk et al. (2007) isolated some bacterial strains from various
tissues of the sea cucumber species, ( Holothuria atra ). The
bacterial secretions and extracts showed an interesting antibacterial activity.
Out of the thirty strains isolated, seven strains exhibited modest to high
activity. Researchers also optimized the growth media to enhance the production
of antibacterial peptides. Based on activity screening data, the species namely
Klebsiella pneumoniae , Salmonella typhimurium , Proteus
vulgaris and Escherichia coli were found to be the most sensitive
organisms.
The crude extracts and pure
fractions isolated from Holothuria polii (a Mediterranean sea
cucumber), have shown concentration-dependent antifungal activity against some
molds and yeasts as described by Ismail et al. (2008). According to
the data generated, the strains of Aspergillus fumigatus were more
sensitive to the tested fractions and extracts, whereas those from Trichophyton
rubrum were less responsive. Besides the extracts, different bioactive
compounds, most of them known as triterpene glycosides, have been isolated from
sea cucumber offering antimicrobial activity. One of these bioactives, namely
patagonicoside A, isolated from sea cucumber ( Psolus patagonicus ),
is identified as disulfated tetrasaccharide using 1D and 2D NMR spectral
information. Furthermore, it is reported that patagonicoside A has good
antifungal activity against pathogenic fungus ( Cladosporium cucumerinum
). Two newly identified sulfated triterpene glycosides, Hemoiedemosides A and
B, from the Patagonian sea cucumber ( Hemoiedema spectabilis )
exhibited considerable antifungal activity against phytopathogenic fungus ( Cladosporium
cucumerinum ), while the semi-synthetic desulfated derivative
hemoiedemosides A was relatively less active.
Some secondary metabolites,
characterized as triterpene glycosides, from sea cucumber ( Psolus
patagonicus ) using a combination of chemical and chromatographic
techniques have offered considerable antifungal potential. The purified
fractions, mostly comprising of patagonicoside A, showed stronger antifungal
action. In comparison with an effective synthetic antifungal product, sea
cucumber-derived patagonicoside A and its derivative, for example, desulfated
glycoside (ds-patagonicoside A), has comparable antifungal action against
molds, Fusarium oxysporum , Cladosporium fulvum , and Monilia
sp.. Yuan et al. (2009) also reported antifungal activity of four
newly identified holostan-type triterpene glycosides, 17α-hydroxy impatienside
A, marmoratoside A, marmoratoside B, 25-acetoxy bivittoside D, together with
two previously known triterpene glycosides, (impatienside A and bivittoside D),
isolated from ( Bohadschia marmorata ) species of sea cucumber. They
elucidated the structures of the new triterpene glycosides using spectroscopic
data, produced by two-dimensional NMR (2-D NMR) and other biochemical methods.
Now the emergence of resistance of bacteria to commonly used synthetic
antimicrobial (antibacterial and antifungal) drugs as a result of long-term
drug therapy is a common phenomenon. Based upon the antimicrobial potential as
revealed by several studies, it would be interesting to explore sea cucumbers
as a natural source for isolation of novel antimicrobial agents for drug
development against infectious diseases.
Antioksidan
Currently, use of plants or
marine-based natural antioxidant compounds has gained much recognition due to
their potential health functions and multiple biological properties. Thousands
of plants species have already been researched for potential antioxidants;
however due to lack of exploration, much potential remains for screening marine
organisms for their antioxidant principles. Sea cucumber is one of the marine
organisms that can be explored as a potential source of valuable antioxidants.
The antioxidant potential of
fresh and rehydrated sea cucumber ( Cucumaria frondosa ) with/without
internal organs has been evaluated by Zhong et al. (2007). The tested
sea cucumber exhibited radicals scavenging properties. The rehydrated samples,
especially those with internal organs, possessed higher antioxidant activity
than their fresh counterparts. According to the findings of this study, poor
correlation existed between radical scavenging capacity and total phenolics
content, suggesting that other components, in addition to phenolic compounds,
could have contributed to the antioxidant activity of sea cucumber. Meanwhile,
Zeng et al. (2007) reported the antioxidant activity of gelatin
hyrolysates from sea cucumber, ( Paracaudina chilensis ). In this
study the gelatin was hydrolyzed by bromelain and then using ultrafiltration
membrane separated into two major molecular weight fractions (greater than and
less than 5 kDa). The hydrolysates tested scavenged the superoxide anion
radicals to significant level. A rabbit liver mitochondrial free radical damage
model was used for in vivo activity trials. Owing to reasonable
radical scavenging potential, sea cucumber gelatin hydrolysate prevented the
damage of rabbit liver and mitochondria. The antioxidant activity of sea
cucumber-derived peptides has been confirmed by Chenghui et al.
(2007). They separated sea cucumber hydrolysate into different molecular weight
fractions by the methods of ultrafiltration and lyophilization. The results
showed that peptides, with molecular weight of 1000~3000 u, exhibited greater
antioxidant and scavenging effect on DPPH, even higher than the positive
control, Vitamin E.
Total phenolics and total
flavonoids contents, and antioxidant activity of the extracts from different
parts of Atlantic sea cucumber ( Cucumaria frondosa ) have been
assessed by Mamelona et al. (2007). Of the tested extracts, ethyl
acetate-extracted components, belonging to digestive tract, showed relatively
higher antioxidant activity, while water extracts derived from digestive tract
and respiratory apparatus have the least. A good correlation existed between the
data of ORAC (oxygen radical absorbance capacity) and total phenolic contents
of the extracts/fractions of muscles and gonads. Similarly, ORAC and total
flavonoids data showed good correlation ( p < 0.05) in all
experiments. The results of this study showed that C. frondosa tissues
contained relatively higher levels of natural antioxidants and can be used to
prevent lipid oxidation reactions, especially those initiated by free radicals
and reactive oxygen species. Hence, sea cucumbers can be a useful natural
source for dietary antioxidants. In another investigation, the antioxidant
activity and nutritional composition of protein hydrolysates from Atlantic
sea-based freez-dried sea cucumber, Cucumaria frondosa , has been
demonstrated. The hydrolysates tested contained high level of protein (55%),
and essential amino acids (35% of total amino acids) along with an impressive
nitrogen solubility index (68%). The hydrolysates also indicated significant
antioxidant efficacy in both ORAC (267–421 μmol TE/g) and inhibition of lipid
oxidation (54–57%) assays, which might be linked to the presence of antioxidant
peptides. Atlantic sea-based species of sea cucumber and green sea urchin
byproducts could be used as a source of dietary proteins, with potential
antioxidant peptides.
A polypeptide isolated from sea
cucumber through ultrafiltration and lyophilization methods exhibited effective
antioxidant activity when tested on the hydroxyl and superoxide anion radicals.
Similarly, the antiproliferative and in vitro antioxidant properties
of organic extract (OE) and aqueous extract (AE) from sea cucumbers, Holothuria
leucospilota , Holothuria scabra and Stichopus chloronotus
have been examined by Althunibat et al. (2009). The results indicate
that AE of H. leucospilota has the highest amount of total phenolics
(9.70 mg GAE/g extract), while the OE of H. scabra contained the least
(1.53 mg GAE/g extract). Also the AE of S. chloronotus scavenged DPPH
free radical (IC 50 = 2.13 mg/mL) more effectively while AE (50
mg/mL) from H. scabra , H. leucospilota and S.
chloronotus exhibited superior antioxidant activity (77.46%, 64.03% and
80.58%, respectively) in terms of linoleic acid peroxidation. A wide variation
of antioxidant components and activities among the analyzed sea cucumber
species, have been recorded. Relatively, AE have shown better antioxidant
attributes than the OE, supporting that majority of the sea cucumber
antioxidant components might have been hydrophilic in nature. It is
understandable that the tested sea cucumber species can be employed as a useful
source for isolation of natural antioxidant and anticancer agents. According to
research work by Wang et al. (2010), a gelatin hydrolysate with
molecular weight, 700–1700 Da, prepared from sea cucumber ( Stichopus japonicus
) body wall, scavenged the superoxide and hydroxyl radicals in a
concentration-dependent manner. The tested gelatin hydrolysate also showed very
good inhibitory effect against melanin synthesis and tyrosinase activity in B16
cells. In a similar study Huihui et al. (2010) evaluated the free
radical scavenging ability of functional polypeptides of sea cucumber ( Acaudina
molpadioides ), produced through optimized enzymatic hydrolysis process.
In this study more than 70% of the free radicals were scavenged, IC 50
value for scavenging hydroxyl and superoxide anion free radicals were 27.8
mg/mL, 49.3 mg/mL, respectively. Peptides with molecular weight distribution
less than 5 kDa exhibited greater ability to scavenge the free radicals.
Besides, there are also other studies which demonstrate that the coelomic fluid
from sea cucumber is a good source of antioxidants.
Anti-Thrombotic
A unique sulfated
polysaccharide, extracted from sea cucumber ( Leptopentacta grisea )
body wall has been found to be a strong inhibitor of both P- and L-selectins.
This study also supports the findings of a previous work by Zancan and Mourao
(2004), that the sulfated fucose branches are required for the anticoagulant
and antithrombotic activities of fucosylated chondroitin sulfate (FucCS). The
antithrombotic and anticoagulant activities of depolymerized fragment (DHG) of
glycosaminoglycan extracted from sea cucumber ( Stichopus japonicas )
(FGAG) have been compared with those of unfractionated heparin (UFH) or low
molecular weight heparin (LMWH) by Suzuki et al. (1991). DHG at levels
greater than 0.3 mg/kg iv significantly prevented the death of mice treated with
thrombin (800 U/kg iv). Under the same conditions, FGAG, UFH and LMWH prevented
the death of mice at dosage higher than 0.3, 0.3 and 0.6 mg/kg iv,
respectively. These results suggest that sea cucumber-derived DHG-1 is a
promising antithrombotic agent having quite different anticoagulant property
from that of UFH or LMWH.
Another study by Li et al.
(2000) revealed the antithrombotic effects of sea cucumber-derived
glycosaminoglycan (GAG). In this experiment, the effect of GAG on the factors
such as assembly, dispersion, and fibrin gel structure and functionality of
plasmin was appraised with the aid of electron microscopic and biochemical and
chromogenic assays. Besides, the influences of GAG expression and transcription
of tissue factor and thrombomodulin in lipopolysaccharide-stimulated human
umbilical vein endothelial cells (HUVECs) were also observed. The results of
this study reveal that the function of GAG is analogous to dermatan sulfate,
both in terms of efficacy and mechanism of antithrombin. Furthermore, it has
been shown that coltlysis by GAG is controlled by its capacity to enhance plasmin
activity, in order to inhibit the polymerization of fibrin monomer,
consequently altering the fibrin network architecture. It can be claimed that
such an effect on HUVECs materializes at a transcriptional level and thus might
be responsible for the antithrombotic attributes of GAG. The findings of this
study suggest that sea cucumber-derived GAG possesses anticoagulant activity in
vivo and can be used as a promising drug for antithrombotic therapy.
Antitumor
Sea cucumbers contain a variety
of anti-tumor ingredients. These anti-tumor active components play important
roles in different stages of tumor development, progression and metastasis. The
exploration of anti-tumor active ingredients from sea cucumbers might open
windows of opportunities to discover new antitumor agents from other marine
sources for clinical tumor treatment. Triterpene glycosides, namely
holothurinosides A, B, C and D as well as desholothurin A from sea cucumber ( Holothuria
forskali ), have considerable antitumor activity. Holothurinosides A and B
are the first non-sulfated pentasaccharide saponins isolated from marine
echinoderms while C and D are the di and tetrasaccharides. Sea cucumber-derived
holothurinosides A–D and the related saponin have shown antitumor and antiviral
activities. Holothurinosides A and desholothurin A are the most effective with
IC 50 values of 0.46 and 0.38 mg/mL, respectively against P388 cell
lines. Similarly, five new saponins (holothurinosides A–D )
isolated from the aqueous-methanolic extract of sea cucumber ( Holothuria
forskali ) have also offered considerable antitumor and antiviral
activities.
According to another research
report, the glycoproteins obtained from the body wall of sea cucumber ( Mensamaria
intercedens ) could significantly inhibit the growth of Sarcoma 180 cells
implanted subcutaneously in mice ( p = 0.05) at dosage of 20–30 mg/kg
per day ×10 with no sign of toxicity. Six newly isolated triterpene glycosides,
intercedensides D–I, from the whole body of sea cucumber ( Mensamria
intercedens ), have shown good antitumor activity. Chemical and
spectroscopic (NMR and ESIMS) structural elucidation demonstrated that
intercedensides D, E, G, and H have conjugated double bond system (22 Z
,24-diene) in the aglycon side chain, while intercedensides F and I, contained
only a single double bond in the same chain. Lntercedensides D–H has displayed
considerably high cytotoxicity (ED 50 0.96–5.0 mg/mL) against human
tumor cell lines. The effect of philinopside A, a novel sulfated saponin
derived from sea cucumber ( Pentacta quadrangulari ) on the
angiogenesis and tumor growth have been studied by Tong et al. (2005)
using different in vitro and in vivo models. The results
revealed that philinopside A has high anti-tumor activity in both the in
vivo and in vitro trials.
According to Ogushi et al.
(2006), when human colon adenocarcinoma Caco-2 cells were exposed to hot water
extract of sea cucumber ( Stichopus japonicus ), certain morphological
changes occurred in the extract-treated cells. The researchers in this study
demonstrated the induction of apoptosis using phosphatidylserine translocation
(APO Percentage Assay kit), terminal deoxynucleotide transferase-mediated
dUTP-biotin nick-end labeling (TUNEL), and DNA fragmentation as DNA ladder. The
data showed that apoptosis is induced by a high molecular weight fraction in a
dose dependent manner. It could be predicted that water extracted
(water-soluble) and higher molecular weight compounds of sea cucumber might
exhibit anti-tumor activity by triggering apoptosis, and the apoptosis-inducing
activity may contribute to cancer chemopreventive effects of sea cucumber.
In another experiment conducted
by Zhang et al. (2006), active n -BuOH extract of sea
cucumber, ( Holothuria fuscocinerea ) was fractionated resulting in
isolation of three new triterpene glycosides, fuscocinerosides A, B, and C,
along with two known glycosides, pervicoside C and holothurin A. Structural
elucidation, using spectral and chemical data showed that all the compounds
possessed the same tetrasaccharide moiety, 3- O
-methyl-β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-
(1→4)-β-D-quinovopyranosyl-(1→2)-4- O
-sodiumsulfato-β-D-xylopyranosyl, linked to C-3 of holostane triterpene
aglycones that differed in their side chains and 17-substituents. All the
tested glycosides exhibited considerable cytotoxicity in vitro against
human tumor cell lines. Wu et al. (2006), elucidated the structure of
three newly isolated triterpene glycosides (nobilisides A, B and C) from sea
cucumber, ( Holothuria nobilis ). Various spectral and chemical
analyses were performed to deduce the chemical structures of the compounds
isolated. Their results revealed that compounds A and C are non-sulfated
monoglycosides while B is a sulfated diglycoside. All the three glycosides
exhibited notable cytotoxic effects against human tumor cells. In their next
study, they identified hillasides A and B, as new triterpene glycosides, in sea
cucumber ( Holothuria hilla ) along with a previously known glycoside,
holothuria B. They found that occurrence of conjugated double bonds [22 E
,24-diene] in the aglycone of hillasides A is a unique structural feature among
sea cucumber glycosides. Both of the newly identified glycosides showed
appreciable cytotoxic potential against tumor cell lines in human.
Recently, a new cytotoxic
lanostane-type triterpene glycoside from the sea cucumber ( Holothuria
impatiens ) has been isolated and structurally identified. The newly
elucidated compound showed in vitro cytotoxicity, even better than
that of an anticancer drug etoposide (V-16) against seven human tumor cells. In
a recent investigation, Lu et al. (2009) evaluated the antitumor
activity of Stichopus japonicus acid ingredients mucopolysaccharide
(SJAMP) involving animal experimental trials. Their results revealed SJAMP to
be a potential antitumor agent. SJAMP is one of the important biologically
active compounds identified in sea cucumber, ( Stichopus japonicas ).
Based on the facts, sea cucumbers can be recommended as a medicated food with
therapeutic functions during and after the treatment of certain tumors. Aminin et
al. (2010) identified a new immunomodulatory lead compound, cumaside from
sea cucumber ( Cucumaria japonica ). Chemically, cumaside is a complex
of monosulfated triterpene glycosides and reveals antitumor activity against
experimental mouse Ehrlich carcinoma in vivo.
Antiviral
There are evidences that sea
cucumbers bioactives also have antiviral activity. The antiviral activity of
Liouvillosides A and B, which are trisulfated triterpene glycosides, isolated
from Antarctic sea cucumber ( Staurocucumis liouvillei ), have been
examined by Maier et al. (2001) . Based on the results of
activity-directed bioassays, both glycosides showed good antiviral activity
against herpes simplex virus type 1 (HSV-1). Sea cucumber-derived fucosylated
chondroitin sulfates (FCS), recognized as a type of sulfated polysacchahers,
can inhibit human immunodeficiency virus (HIV) infection, thus suggesting
potential utilization of these valuable marine invertebrates as a natural
therapy against HIV disorders and AIDS (acquired immune deficiency syndrome).
Osteoarthritis
It is revealed that certain
chemical compounds namely chondroitin, mucopolysaccharides and glucosamine,
occurring in sea cucumbers, have beneficial effects in arthritis disorders.
Researchers have shown that usage of sea cucumber is beneficial in maintaining
prostaglandins balance thus helping out in the treatment of musculo-skeletal
inflammatory disorders such as osteoarthritis, rheumatoid arthritis and spinal
arthritis. Two types of fucan sulfates have been isolated from sea cucumber ( Stichopus
japonicus ) body wall using chloroform/methanol solvent system. Both types
of fucan sulfates tested inhibited the osteoclastogenesis in an in vitro
assay. This suggests that these compounds derived from sea cucumber are strong
inhibitors of osteoclastogenesis. Therefore, sea cucumber-derived chondroitin
sulfate and other related marine compounds can be a useful folk remedy for
curing joint-pain and arthritis. The intake of dried sea cucumber is
medicinally effective in suppressing arthralgia.
Wound Healing
Sea cucumber and sea
cucumber-based products are now becoming available in shelves of health food
stores due to their therapeutic effects, in particular the wound healing
functions (to speed recovery of sores, cuts and wounds on the skin, as well as
internally for ulcers and other ailments that involve internal damage). It is believed
that direct use of sea cucumber can reduce wound recovery time and help new
tissue formation and regeneration in human just as the sea cucumber's ability
to quickly regenerate its own body tissue when damaged. It is evident that sea
cucumber ( Stichopus chloronotus ) fatty acids including arachidonic
acid (AA C20:4), eicosapentaenoic acid (EPA C20:5), and docosahexaenoic acid
(DHA C22:6) can play a potential role in tissue repair and wound healing. It
has been revealed in the literature that the bottom sediment feeder sea
cucumber can contain high contents of branched chain fatty acids (BCFA) to
assist in the potential wound healing activity. An appreciable amount of EPA in
sea cucumbers might be linked well with
the ability of these echinoderms to initiate tissue repair. EPA is known to be
the main active compound in fish oils, and exerts its function by means of
prostaglandin inhibition and anti-thrombic attribute. Besides, EPA also plays a
potential role in the mechanism of blood-clotting
IV.
KESIMPULAN
Adapun kesimpulan yang dapat diberikan adalah sebagai
berikut:
1.
Teripang
merupakan salah satu hewan laut yang memiliki banyak kandungan bahan aktif
didalamnya.
2.
Bahan
aktif yang terdapat dantaranya adalah anti angiugenik, anti kanker, anti
koagulan, anti future immune, anti htpertension and angiohensin conriting
enzyme, anti inflammatory, anti moikroba, anti oxidant, anti thrombotic, anti
tumor, antiviral, osteococrthtis, wound healing.
3.
Bahan
aktif pada teripang sangat berguna bagi kehidupan manusia diberbagai bidang.
DAFTAR PUSTAKA
Althunibat
et al .2009. In vitro antioxidant and antiproliferative activities of three Malaysian sea
cucumber species. Eur. J. Sci. Res. 2009; 37
:376–387.
Berry. 1972, medicine from the sea. Inc. New york
Dahuri 2005 Dahuri R. 2005. Menggali Bahan Baku Obat di dalam Laut.
Departemen Perikanan dan Kelautan. http://www/dkp
Harjono.
1987. Budidaya Teripang Suatuy Budidaya
Bermasa Depan Cerah. Buletin Warta Mina. Ditjen Perikanan: Jakarta.
Herencia
et al. .1998. Anti-inflammatory
activity in mice of extracts from mediterranean marine invertebrates. Life Sci. 1998; 62 :115–120.
Janakiram
et al. 2010. Chemopreventive
effects of frondanol A5, a Cucumaria frondosa extract, against rat colon
carcinogenesis and inhibition of human colon cancer cell growth. Cancer Prev. Res. 2010; 3 :82–91.
Jawahar
et al. .2002. Antimicrobial
substances of potential biomedical importance from holothurian species. Indian J. Mar. Sci. 2002; 31 :161–164.
Maier
et al. 2001. Two
new cytotoxic and virucidal trisulfated triterpene glycosides from the
Antarctic sea cucumber Staurocucumis liouvillei . J. Nat. Prod. 2001; 64
:732–736.
Mulloy
et al .2000. Structure/function
studies of anticoagulant sulphated polysaccharides using NMR. J. Biotechnol. 2000; 77 :123–135.
Nessa,
MN. 1987. Perkembangan Perikanan Teripang
di Bagian Barat Sulawesi. Makalah Seminar Laut: Jakarta.
Riani,
Etty, Khaswar Syamsu dan Kaseno. 2008. Pemanfaatan
Steroid Teripang Sebagai Aprodisiaka Alami dan untuk Pengembangan Budidaya
Perikanan. Laporan Eksekutif Hibah Penelitan Pascasarjana- HPTP. ITB.
Silchenko
et al. 2007. Constituents
of the sea cucumber Cucumaria okhotensis . Structures of
okhotosides B1–B3 and cytotoxic activities of some glycosides from this
species. J. Nat. Prod. 2007; 71
:351–356.
Smith
.1978. A proposed
phylogenetic relationship between sea cucumber Polian vesicles and the vertebrate
lymphoreticular system. J. Invertebr.
Pathol. 1978; 31 :353–357.
Suzuki
et al. 1991. Antithrombotic
and anticoagulant activity of depolymerized fragment of the glycosaminoglycan
extracted from Stichopus japonicus Selenka. Thromb. Haemost. 1991; 65 :369–373.
Tian et al. 2005.
a new sulfated saponin from sea cucumber,
blocks the interaction between kinase insert domain-containing receptor (KDR)
and αvβ3 integrin via binding to the extracellular domain of KDR. Mol. Pharmacol.
2007; 72
:545–552.
Tong
et al. 2005. a
novel marine-derived compound possessing dual anti-angiogenic and anti-tumor
effects. Int. J. Cancer. 2005; 114
:843–853.
Wu et al. .2010. Free-radical
depolymerization of glycosaminoglycan from sea cucumber Thelenata
ananas by
hydrogen peroxide and copper ions. Carbohydr. Polym. 2010; 8
:1116–1124
Yusuf, 2008. Perbaikan Kualitas Produk Industri Kecil Teripang. Jurnal Sains dan
Teknologi Indonesia Vol.2, No.3, (Juni 2000), Hal. 52-55
Zhao
et al. .2007. Differential
effects of sulfated triterpene glycosides, holothurin A1, and
24-Dehydroechinoside A, on antimetastasic activity via regulation of the MMP-9
signal pathway. J. Food Sci. ; 75
:280–288.
Zhong
et al. 2007. Compositional
characteristics and antioxidant properties of fresh and processed sea cucumber
( Cucumaria frondosa ) J.
Agric. Food Chem. 2007; 55 :1188–1192.
Tidak ada komentar:
Posting Komentar