Sabtu, 16 November 2013

IDENTIFIKASI BAHAN AKTIF PADA TERIPANG (Holothuria sp)






IDENTIFIKASI BAHAN AKTIF PADA TERIPANG (Holothuria sp)
(Makalah Bioteknologi Perikanan)








Disusun Oleh:
1.      Gito Rollis                         (1114111018)
2.      Widi Indra Kesuma          (1114111058)







JURUSAN BUDIDAYA PERAIRAN
FAKULTAS PERTANIAN
UNIVERSITAS LAMPUNG
2012



MAKALAH BIOTEKNOLOGI PERAIRAN
Identifikasi Bahan Aktif pada Teripang (Holothuria sp)
Disusun Oleh :
Gito Rollis (Npm. 1114111018) dan Widi Indra Kesuma (Npm. 1114111058)
Jurusan Budidaya Perairan
Fakultas Pertanian
Universitas Lampung
2012








 
Abstrak
Teripang, milik Holothuroidea, adalah invertebrata laut, biasanya ditemukan di daerah bentik dan laut dalam di seluruh dunia. Mereka memiliki nilai komersial yang tinggi ditambah dengan produksi global meningkat dan perdagangan. Teripang, informal disebut sebagai beche-de-mer, atau gamat, telah lama digunakan untuk makanan dan obat rakyat dalam masyarakat Asia dan Timur Tengah. Nutrisi, teripang memiliki profil mengesankan nutrisi berharga seperti Vitamin A, Vitamin B1 (tiamin), Vitamin B2 (riboflavin), vitamin B3 (niasin), dan mineral, terutama kalsium, magnesium, zat besi dan seng. Sejumlah kegiatan biologis dan farmakologis unik termasuk anti-angiogenik, antikanker, antikoagulan, anti hipertensi-, anti-inflamasi, antimikroba, antioksidan, antitrombotik, antitumor, dan penyembuhan luka telah dianggap berasal dari berbagai jenis teripang. Sifat terapeutik dan manfaat obat teripang dapat dikaitkan dengan kehadiran beragam bioaktif terutama glikosida triterpen (saponin), kondroitin sulfat, glikosaminoglikan (GAG), polisakarida sulfat, sterol (glikosida dan sulfat), fenolat, cerberosides, lektin , peptida, glikoprotein, glycosphingolipids dan asam lemak esensial. Ulasan ini terutama dirancang untuk menutupi komponen bernilai tinggi dan bioaktif serta sifat biologi dan terapi beberapa teripang berkaitan dengan mengeksplorasi menggunakan potensi mereka untuk makanan fungsional dan Nutraceuticals.
Kata kunci: bioaktif teripang, nutrisi antioksidan, glikosida triterpen, glikosaminoglikan, peptida fungsional, kegiatan biologi, fungsi kesehatan obat






 










I.                   PENDAHULUAN


1.1  Latar Belakang

Indonesia merupakan negara kepulauan terbesar di dunia yang memiliki 17.504 pulau dan garis pantai lebih dari 81.000 km dengan luas perairan laut sekitar 5,8 juta km2 (75% dari total Wilayah Indonesia). Kondisi alam dan iklim yang tidak fluktuatif, menjadikan Indonesia mempunyai potensi sumber daya laut dengan keanekaragaman hayati yang sangat besar, walaupun belum terdayagunakan (Reina 2004).

Mengingat prospek ekonomi yang besar dari sumbersumber hayati di laut sebagai bahan obat-obatan itu, Departemen Kelautan dan Perikanan (DKP) menjadikan bioteknologi kelautan sebagai program unggulan sejak tahun 2002 (Dahuri 2005).

Bioteknologi kelautan yang berkembang pesat bertujuan memanfaatkan biota laut, salah satunya dengan ekstraksi senyawa bioaktif sebagai obat-obatan dan bahan farmasi. Potensi teripang cukup besar karena Indonesia memiliki perairan pantai dengan habitat teripang yang cukup luas. Dari sekitar 650 jenis teripang yang ada didunia 10% berada di Indonesia dan dari jumlah tersebut dipastikan ada 7 jenis yang tergolong mempunyai nilai jual tinggi yakni teripang pasir (Holothuria Scabra), teripang hitam (Holothuroidea Edulis), teripang coklat (Holothuroidea Marmoreta),teripang merah (Holothuroidea Vatiensis), teripang koro (Holothuroidea Nobilis), teripang nanas (Holothuroidea Anana) dan teripang gama ( Stichopus Varigatus) (Yusuf, 2008).

Teripang atau timun laut (sea cucumber) adalah organisnie laut dari philur~t Echi ~lon'ervrota, yang memiliki kandungan senyawa bioaktif yang cukup potensial. Teripang selain merupakan bahan makanan yang lezat, juga mempunyai senyawa sebagai anti hiotik, anti mikrobial, anti tumor, anti kougulan dan sebagai anestasi (Berry. 1972, Hashimoto, 1979).

Sebena~ilyaa da sekitar 60 jeuis teripalig yang 11idup di laut Indonesia, tetapi ham sekitar 9 jenis yang dimanfaatkan dan 2 jenis dianraranya mempunyai nilai ekonomis tinggi, yaitu teripang pasir (Holorhurin scarbn) dan teripang lotong (Holo~/turin nobilis) (Harjono. 1987; Nessa dan Aral~nian, 1987).

Dari sekitar 300 senyawa hasil laut yang diduga mempunyai pengamli bioaktif, terdapat 2 kelompok, yaitu kelompok senyawa yang larut dalam pelarut organik (lipid solube) dan kelompok senyawa yatig larut dalam pelarut air (water soluhe). Umumnya senyawa yaug telah diteliti iersebut ada!ah dari kelompok yang larut dalam pelarut organik (Faulkerner, 1977 di dalam Nashimoto, 1979).

Penelitian ini bertujuan unhtk mempelajari jenis organisme laut dari pliilum Echinodennata yang mempunyai kandungan senyawa bioaktif, yang juga banyak terdapat di- perairan Indonesia, diniana salah satu diantaranya adalah teripang. Dari masing-masing bagian organ tubuh dan isi perulnya, diharapkan akan diperoleh kandungan senyawa antibiotik, dimana baik jumlah maupun sifahya kemungkinan terdapat perbedaan.

Dengan penelitian ini akan diketahui jenisjenis teripang, dimaua selain dagingnya juga ada bagian tertentu yang menghasilkan komponen bioaktif. Selanjumya dari penelitian ini diharapkan akan diperoleh kemungkinan pe~nanfaatzn senyawa bioaktif tersebut, yang berasal dari hahan aiami laut itu sendiri, ut~tuk ,pengawetan hasil perikanan.




1.2  Tujuan
Adapun makalah ini bertujuan unhtk mempelajari jenis organisme laut dari pliilum Echinodennata yang mempunyai kandungan senyawa bioaktif, yang juga banyak terdapat di- perairan Indonesia, diniana salah satu diantaranya adalah teripang. Dari masing-masing bagian organ tubuh dan isi perulnya, diharapkan akan diperoleh kandungan senyawa antibiotik, dimana baik jumlah maupun sifahya kemungkinan terdapat perbedaan. Selanjumya dari penelitian ini diharapkan akan diperoleh kemungkinan penanfaatzn senyawa bioaktif tersebut, yang berasal dari hahan aiami laut itu sendiri, uttuk ,pengawetan hasil perikanan.

























II.                METODELOGI


Metode Penelitian
Rancangan yang akan digunakan dalam penelitian ini adalah Rancangan Acak Lengkap (RAL) Faktorial dengan 3 kali ulangan untuk masing-masing
perlakuan. Yij = μ + αi + δijk + γkl+ ωl +αωil+βω jl + αβωij+ εijkl
Dimana :
Y ijkl   = nilai respon pada faktor A taraf ke-i, ulangan ke-k dan waktu pengamatan ke-l.
μ          = rata-rata sebenarnya/rataan umum
αi         = pengaruh faktor A taraf ke-i
δijk      = komponen acak perlakuan
γkl       = komponen acak waktu pengamatan
ωl        = pengaruh waktu pengamatan ke-l
αωil     = pengaruh interaksi waktu pengamatan dan faktor
ijkl       = komponen acak dari interaksi waktu dan perlakuan

Tahapan Penelitian
Penelitian dibagi atas 3 tahap yaitu 1) karakterisasi teripang sebagai bahan baku, 2) ekstraksi teripang pasir dengan menggunakan metode reflux skala 600 ml, 3) Analisis kualitatif dan kuantitatif hasil ekstrak.

Karakterisasi teripang  sebagai bahan baku
Teripang yang akan diekstrak terlebih dahulu dikarakterisasi jenis dan umurnya berdasarkan criteria bobot dan panjang teripang. Bobot dan panjang teripang menggambarkan umur teripang yang sudah dewasa atau matang gonad yang dapat diamati dari bobot (200-500 gram) dan panjangnya (25-35 cm). Teripang yang telah memenuhi kriteria, dibersihkan dan dipisahkan antara daging dan jeroan, dicuci dan digiling, selanjutnya dilakukan ekstraksi.



Langkah Yang Digunakan
Sebanyak 50 kg teripang, diperoleh dikumpulkan dari sekitar perairan. Selanjutnya bahan tersebut dibawa ke laboratorium Mikrobiologi, Fakullas Perikanan, untuk di ekstraksi. Ekstraksi dilakukan dengan meniisahkan bagian badan dan isi perut, dengan menggunakan motoda Qiunn (1988). Sebanyak 200 gr bahan (bagian badan atau bagian isi perut), dicampur dengan pelarut (aseton atau tiietanol) dan dihomogenkan dengan blender sampai halus.

Dilakukan pengadukan selama 12 jam dengan magnetic stirrer. Setelah itu ekstrak disaring dengan menggunakan kain kasa, dan filtratnya disentrifuse pada kecepatan 6000 rpm selama 15 menit pada suhu 0°C. Supermatan yang diperoleh ditampung dalam Erlenmeyer.

Pelarutnya kemudian di uapkan dengan menggunakan vaccum rotavapor pada suhu 35-41°C, selama 8 jam atau sampai pekat. Selanjutnya dilakukan pengeringan dengan freeze dryer. Hasil ekstrak kasar kering ini, kemudian disimpan/dikumpulkan dan di simpan dalam freezer, sebelum pemurnian atau untuk uji sifat antibiotiknya.

Uji aktifitas bioaktifdiantaranya adalah uji aktifitas anti Bakteri, dengan menggunakan Excherechia coli(ATIC 25922) dan Stophylocnecus cureus (ATCC 25923).

Media agar disiapkan dengan cara menimbang beberapa gram nutrient agar, dilarutkan dalam 1000 ml air dengan pH 6,8, kemudian dipanaskan sampai mendidih. Selanjutnya disterilisasi dalam autoklaf pada suhu 121°C selama 15 menit, dengan tekanan 1,4 atm. Sebanyak 15 ml agar dituangkan kedalam cawan petri yang sudah diberi suspense Bakteri.

Ekstrak dari bahan senyawa bioaktif dilarutkan dengan aquades, sehingga konsentrasi ekstrak mencapai 10% dan selanjutnya di teteskan sebanyak 1 cc kedalam cawan petri yang telah berisi Bakteri. Kemudian cawan petri dimasukkan kedalam incubator pada suhu 37°C. pengamatan penghambat koloni dilakukan pada selang waktu 24,48 dan 72 jam.

Untuk mengetahui kekuatan anti biotic ke-2 jenis ekstrak dari bagian organ teripang tersebut dilakukan masing-masing sebanyak 2 kali pengamatan.









































III.             PEMBAHASAN


Teripang atau timun laut (sea cucumber) adalah organisnie laut dari philur~t Echi-~lon'ervrota, yang memiliki kandungan senyawa bioaktif yang cukup potensial. Teripang selain merupakan bahan makanan yang lezat, juga mempunyai senyawa sebagai anti hiotik, anti mikrobial, anti tumor, anti kougulan dan sebagai anestasi (Berry. 1972, Hashimoto, 1979).

Dari sekitar 300 senyawa hasil laut yang diduga mempunyai pengaruh bioaktif, terdapat 2 kelompok, yaitu kelompok senyawa yang larut dalam pelarut organik (lipid solube) dan kelompok senyawa yang larut dalam pelarut air (water soluhe). Umumnya senyawa yaug telah diteliti tersebut adalah dari kelompok yang larut dalam pelarut organik (Faulkerner, 1977 di dalam Nashimoto, 1979).

Dari penelitian yang telah dilakukan, dapat diketahui berbagai jenis bahan aktif dalam teripang, diantaranya yaitu:
Anti-angiogenik
Teripang telah muncul sebagai sumber potensial dari agen anti-angiogenik dan anti-tumor kepentingan medis. Penelitian terbaru mengungkapkan potensi anti kanker dari teripang yang diturunkan bioaktif terhadap kanker tertentu. Tian et al (2005). Diperiksa in vivo dan in vitro fungsi anti-angiogenik dan anti-tumor dari E philinopside senyawa baru diidentifikasi (PE) dari teripang. Mereka dinilai melalui dalam angiogenesis potensial percobaan in vitro penghambatan senyawa menggunakan tes yang berbeda seperti proliferasi, adhesi, migrasi, pembentukan tabung-dan apoptosis pada PE-diperlakukan sel endotel vena umbilikalis manusia (HUVECs) dan manusia sel endotel mikrovaskuler (HMECs). Selain itu, mereka menggunakan in vivo, chorioallantoic membran (CAM) tes untuk memeriksa aktivitas PE-hambatan pada angiogenesis fisiologis. Selain itu, para peneliti menggunakan teknik western blotting untuk menilai kemanjuran PE pada faktor pertumbuhan endotel vaskular (VEGF) menghubungkan Biosignal di HMECs. Hasil penelitian menunjukkan bahwa PE menghambat jauh proliferasi HMECs dan HUVECs, IC 50 2.22 ± 0,31 pM dan 1,98 ± 0,32 pM, masing-masing dan diinduksi apoptosis sel endotel pada jumlah kurang dari 2 pM, menunjukkan penekanan konsentrasi-tergantung dari migrasi sel dan sel adhesi serta pembentukan tabung dalam HUVECs dan HMECs. Demikian pula, dalam uji in vivo CAM, PE (5 nM / telur) menunjukkan penindasan angiogenesis spontan, dan dipamerkan hambatan pertumbuhan jauh di mouse eksperimental (sarkoma 180 dan hepatoma 22) model. Hasil ini menunjukkan bahwa PE dapat dieksplorasi sebagai agen anti-angiogenik yang efisien, untuk menekan (terfosforilasi) aktif bentuk vaskular reseptor faktor pertumbuhan endotel yang terlibat dalam kelangsungan hidup sel endotel, proliferasi adhesi, dan migrasi.
Dalam studi lain, aktivitas anti-angiogenik dari saponin sulfat yang baru terisolasi yaitu Philinospide A, dari teripang (Pentacta quadrangulari), telah diuji terhadap angiogensis dan pertumbuhan tumor dengan Tong et al. (2005). Dalam serangkaian di vitro dan in vivo model. Para peneliti mencatat bahwa teripang-berasal Philinospide A pameran anti-angiogenik efek pada manusia sel endotel mikrovaskuler (HMECs) menunjukkan penggunaannya sebagai agen antikanker yang menjanjikan. Selain itu, ia memiliki efek sitotoksik dan antiangiogenic ganda, yang mungkin dikaitkan dengan potensi penghambatan untuk tirosin kinase reseptor (RTKs). Fucosylated kondroitin sulfat adalah senyawa lain, yang diidentifikasi dalam bunga dan dinding tubuh teripang. Senyawa ini menawarkan aktivitas antiangiogenic baik, sebanding dengan kontrol positif, hidrokortison / heparin, dan bahkan lebih tinggi dari tulang rawan ikan hiu condroitin-6-sulfat.

Antikanker / antiproliferasi

Teripang dilaporkan mengandung beberapa senyawa dengan sifat antikanker dan antiproliferatif.
Aktivitas antikanker dari tiga glikosida triterpen, intercedensides A, B, dan C terisolasi dari teripang (Mensamaria intercedens) telah dievaluasi oleh Zou et al. Para glikosida triterpen terisolasi secara struktural dijelaskan dengan menggunakan analisis kimia dan pendekatan NMR dan ESIMS spektroskopi. Menurut hasil penelitian, senyawa triterpen yang diberikan dipamerkan sitotoksisitas terhadap manusia garis sel tumor dan dengan demikian bisa berfungsi sebagai agen antikanker yang potensial. Salah satu senyawa, intercedenside A juga menunjukkan fungsi antineoplastik baik terhadap tikus S180 sarkoma dan mouse kanker paru-paru Lewis.
Ekstrak air panas dari teripang (Stichopus japonicas) diuji untuk efek mereka pada proliferasi dan H 2 O 2 kerentanan adenokarsinoma kolon manusia Caco-2 sel. Pertumbuhan Caco-2 sel secara signifikan dihambat oleh perlakuan ekstrak. Ekstrak diuji menunjukkan tergantung konsentrasi cytotoxity ke Caco-2 sel. Kerusakan sel oleh ekstrak teripang tampak jelas di atas 1 mg / mL. Selain itu, penggunaan bersama ekstrak teripang mengintensifkan H 2 O 2 sitotoksisitas. Studi lain mengungkapkan isolasi dasar sphingoid dari teripang (Stichopus variegatus) cerberosides bersama dengan efek sitotoksik mereka terhadap manusia garis sel kanker usus besar. Para cerebrosides terisolasi diperiksa untuk struktur kimianya menggunakan informasi massa spektroskopi dan ditemukan memiliki rantai C17 sampai C19 alkil bercabang ditambah dengan 1 sampai 3 ikatan rangkap menanamkan fitur karakteristik untuk teripang sphingoid dibandingkan dengan mereka yang berasal dari mamalia. Basis teripang sphingoid menunjukkan aktivitas cytotxic kuat terhadap sel-sel kanker (DLD-1, WiDr dan Caco-2 sel) mengurangi kelangsungan hidup mereka dengan cara yang tergantung konsentrasi. Kegiatan ini adalah sebanding dengan sphingosine-sel diobati. Senyawa diuji memicu perubahan morfologi sebagai fragmen kromatin kental serta meningkatkan aktivitas caspase-3, mendukung fakta bahwa basis sphingoid dapat mengurangi viabilitas sel dengan menyebabkan apoptosis. Disarankan bahwa teripang yang diturunkan sphingolipids bioaktif bisa berfungsi sebagai komponen makanan fungsional untuk mengurangi kejadian kanker usus besar.
Silchenko et al (2007) juga mempelajari aktivitas antikanker dari tiga oligoglycosides triterpene baru, okhotosides B1, B2, dan B3, terisolasi dari teripang (okhotensis Cucumaria), bersama dengan senyawa yang dikenal frondoside A, cucumarioside A2-5 , dan koreoside A. Mereka menggunakan 2-D NMR dan MS untuk menjelaskan struktur okhotosides B1-3 berdasarkan data spektroskopi didirikan. Hasil mereka menunjukkan bahwa senyawa 1-3 itu cukup beracun terhadap sel tumor HeLa, tapi Frondoside A menunjukkan efek yang lebih sitotoksik terhadap THP-1 dan garis sel tumor HeLa. Demikian pula, triterpenoid novel, frondoside A, berasal dari laut berbasis spesies teripang Atlantik frondosa yaitu Cucumaria telah dilaporkan menunjukkan penghambatan fungsi pertumbuhan efektif melawan sel-sel kanker pankreas manusia. Potensi penghambatan proliferasi diikuti oleh besarnya apoptosis ditandai. Senyawa diuji (Frondoside A) yang seharusnya untuk menginduksi apoptosis melalui jalur mitokondria dan aktivasi kaskade.
Althunibat et al (2009) meneliti efek ekstrak air dan organik dari tiga spesies (Holothuria leucospilota, Holothuria scabra, Stichopus chloronotus) dari teripang, pada pertumbuhan dua sel kanker manusia: A549 (manusia non-kecil paru-paru karsinoma) dan C33A (sel kanker serviks) menggunakan MTT assay. Dari ekstrak diuji, hanya S. chloronotus yang diturunkan ekstrak menunjukkan aktivitas antiproliferatif terhadap garis kanker sel diuji. Sebaliknya ekstrak, air (AE) dari S. chloronotus dipamerkan toksisitas lebih terhadap sel C33A (IC 50 = 10,0 mg / mL) dari A549, sedangkan AE dihasilkan dari H. leucospilota dan H. scabra mengungkapkan tidak ada tindakan penting pada pertumbuhan sel-sel kanker dalam konsentrasi membatasi digunakan. Di sisi lain, ekstrak teripang dihasilkan oleh pelarut organik menghambat pertumbuhan kedua jalur sel (A549 dan C33A) untuk berbagai derajat. Ekstrak organik (OE) dari H. spesies scabra menawarkan aksi antiproliferatif lebih besar terhadap A549 dan sel C33A dengan IC 50 nilai-nilai, 15,5 mg / mL dan 3,0 mg / mL, masing-masing. Selanjutnya, The OE dari S. chloronotus menunjukkan sitotoksisitas terhadap sel lebih C33A (IC 50 = 6,0 mg / mL) sedikit tindakan terhadap sel A549 (IC 50 = 21,0 mg / mL). Fungsi antiproliferatif dan antikanker dari ekstrak teripang dapat berasal kehadiran sejumlah besar fenol total dan flavonids yang dinilai sebagai antioksidan yang efektif untuk melindungi dari stres oksidatif dan penyakit degeneratif, termasuk kanker tertentu.
Janakiram et al. (2010) menilai efek chemopreventive dari frondanol A, glikolipid terisolasi dari teripang (Cucumaria frondosa), terhadap azoxymethane-induced usus tikus karsinogenesis. Mereka menggunakan ACF (aberrantcolonic crypt foci) sebagai penanda keberhasilan untuk menilai tingkat proliferasi ekspresi selama penelitian ini. Selain itu, efek pertumbuhan-hambat dan apoptosis frondanol Sebuah rentang konsentrasi lebih dari 10-120 mg / mL menggunakan HCT-116 garis sel juga dipelajari. Teripang yang diturunkan frondanol A menunjukkan aktivitas pertumbuhan-hambat dan apoptosis sangat baik menyarankan penggunaan hewan ini sebagai bahan untuk makanan fungsional dan Nutraceuticals.
Dua glikosida triterpen sulfat yaitu holothurin A (HA) dan 24-dehydroechinoside A (DHEA), telah diidentifikasi dalam spesies teripang (Pearsonothuria graeffei) oleh Zhao et al. (2010). Kedua glikosida dipamerkan pengaruh yang cukup besar pada metastasis in vitro dan in vivo. Analisis immunocytochemical mengungkapkan bahwa kedua HA dan DHEA secara signifikan menekan ekspresi matriks metallo-proteinase-9 (MMP-9) serta meningkatkan tingkat ekspresi inhibitor jaringan metaloproteinase-1 (TIMP-1). TIMP-1 adalah tombol pengatur untuk MMP-9 aktivasi. Menurut data analisis Western blot, baik HA dan DHEA sangat menekan ekspresi VEGF (faktor pertumbuhan endotel vaskular). Kedua HA dan DHEA pengobatan sangat mengurangi adhesi manusia sel karsinoma hepatoseluler hati (HepG2) untuk kedua Matrigel dan sel endotel manusia (ECV-304) dan juga menghambat HepG2 migrasi sel dan invasi dalam modus tergantung konsentrasi. Selain itu, pengobatan HA bawah diatur tingkat ekspresi NF-kB, yang mungkin terkait dengan aktivitas antimetastatic glikosida triterpen berasal dari Pearsonothuria graeffei.

Anti-koagulan

Sifat antikoagulan dari teripang (Ludwigothurea grisea) terkait dengan kehadiran kondroitin sulfat fucosylated di dinding tubuh hewan laut ini. Senyawa ini memiliki kondroitin sulfat seperti inti yang mengandung rantai samping terdiri dari α-L fucose-sulfat terpasang di Carbon-3 posisi asam β-D-glukuronat. Selama thromboplast parsial diaktifkan dalam tes waktu (APTT), senyawa yang diberikan menunjukkan aktivitas antikoagulan yang sangat baik yang dapat dianggap berasal dari kemampuan untuk memulai penghambatan trombin oleh II kofaktor heparin dan antithrombin. Perbandingan antara hasil dimodifikasi secara kimia (desulfated, karboksil-berkurang, dan parsial defucosylated) dan polisakarida asli menunjukkan bahwa cabang fucose sisi sulfat, memainkan peran penting dalam menanamkan sifat antikoagulan yang lebih baik untuk kondroitin sulfat fucosylated (FCS). Selain itu, aktivitas antikoagulan yang kuat dari FCS, ditambah dengan efek samping yang mungkin tidak ada, membuat polisakarida ini molekul menarik untuk aplikasi potensial dalam pengujian trombosis eksperimental pada tingkat klinis.
Mulloy et al (2000) diselidiki bahwa laut sulfat mentimun-terisolasi fucosylated chondroitin (FCS), menjadi semacam polysacchahers sulfat, memiliki aktivitas antikoagulan ampuh. Mereka menggunakan NMR spektroskopi untuk menjelaskan struktur FSC. Hasilnya menunjukkan bahwa aktivitas antikoagulan dari FSC terutama tergantung pada cabang sulfat yang fucose tetapi perubahan kecil dalam struktur penentu sulfat dapat menyebabkan hilangnya hampir semua tindakan antikoagulan, terlepas dari adanya tingkat tinggi sulfation. Dalam studi lain, para peneliti menyelidiki aksi antikoagulan / antitrombotik dari teripang dinding tubuh yang diturunkan FCS, dan turunan kimia dari polisakarida yang sama, menggunakan model trombosis stasis pada kelinci. Telah ditemukan bahwa kedua defucosylation parsial dan desulfation dari polisakarida menekan aksi antikoagulan mereka.
Beberapa fraksi baru telah dihasilkan dari teripang (Thelenota ananas) yang diturunkan fucosylated kondroitin sulfat oleh Wu et al. (2010) melalui proses deploymerization. Fraksi baru dikembangkan, dengan berbagai tetapi distribusi berat molekul yang sempit, yang ditandai untuk karakteristik fisikokimia dengan menggunakan FT-IR dan data NMR spektral. Hasil dikonfirmasi struktur utama dari fraksi untuk dipertahankan setelah depolimerisasi tersebut. Selanjutnya, para peneliti menguji aktivitas antikoagulan dari fraksi diproduksi menggunakan thromboplast parsial diaktifkan dalam waktu dan menemukan bahwa aktivitas APTT menurun secara berat molekul tergantung mengikuti fungsi logaritma seperti. Dibandingkan dengan dosis tinggi rendah-molekul fraksi berat heparin (LMWH), fraksi berat molekul lebih diinginkan (13.950 Da) menunjukkan aksi antikoagulan lebih rendah. Oleh karena itu, fraksi menunjukkan efikasi lebih sebagai agen antitrombotik menawarkan risiko perdarahan kurang relatif terhadap LMWH.

Anti-Fatigue Immune dan Fungsi

Laut polipeptida mentimun telah menunjukkan fungsi anti-kelelahan dan kekebalan yang signifikan pada tikus, mereka tidak menunjukkan efek yang jelas pada berat badan pada tikus, secara signifikan memperpanjang waktu dimuat-berenang dan tongkat bergulir, sangat terdegradasi isi nitrogen urea darah dan meningkatkan konten glikogen hati tikus latihan posting. Liu et al. (2009) mempelajari fungsi anti-kelelahan dan kekebalan cairan teripang lisan dengan menentukan waktu loading renang dan darah asam laktat dan glikogen hati tikus. Temuan mereka menunjukkan bahwa saat berenang dari tikus, diberikan dengan cairan oral, dibandingkan dengan kelompok kontrol, secara signifikan berkepanjangan sehingga meningkatkan isi hati glikogen (P <0,01). Juga, setelah berenang di kelompok uji, dosis tinggi dari cairan oral, asam laktat darah isi dari tikus secara signifikan menurun (P <0,01). Hasil mendukung bahwa teripang cairan oral memiliki terlihat anti-kelelahan efek.
Komposisi bioaktif dari teripang berbudaya (Stichopus japonicus) dan anti-kelelahan efek pada tikus telah dijelaskan oleh Bing et al. (2010). The body wall of S. japonicus was found to be rich in acidic mucopolysaccharides, collagen, bioactive amino acids and lipids. In comparison with the control group, administration with Stichopus japonicus , for 30 consecutive days, prolonged the duration of exhaustive swimming in mice, promoted the synthesis of liver glycogen and hemoglobin and also kept the level of hemoglobin (90 min post-swimming) similar to that of before swimming. It also significantly decreased the generation of blood lactic acid and accelerated the elimination of blood lactic acid and blood urea nitrogen in mice after swimming thus improving the exercise endurance in mice. Based on these findings, it could be concluded that the trepang has an appreciable anti-fatigue activity.

Anti-Hypertension and Angiotensin Converting Enzyme (ACE) Inhibition

Currently, sea cucumbers are gaining recognition among researchers due to their antihypertensive and ACE inhibitory principles. In a recent work, Zhao et al. (2007) investigated the antihypertensive effect and purified an ACE inhibitory peptide from sea cucumber ( Acaudina molpadioidea ) gelatin hydrolysate. The gelatin was hydrolyzed sequentially with bromelain and alcalase. The hydrolysate was fractionated into three portions with typical molecular weight ranges (GH-I, <10 kDa; GH-II, <5 kDa; GH-III, <1 kDa) using ultrafiltration membrane bioreactor (UMB). Among the products, the GH-III showed higher ACE inhibitory activity, IC 50 0.35 mg/mL. When GH-III was used as drink administered to renal hypertensive rats (RHR) for one month, it significantly reduced the systolic blood pressure and diastolic blood pressure of RHR, indicating anti-hypertensive effect by oral administration. The researchers continued their study  further with the aim of preparing hydrolysate of Acaudina molpadioidea body wall protein with high anti-hypertensive activity. They hydrolyzed Acaudina molpadioidea body wall protein, sequentially, with two enzymes namely bromelain and alcalase and then fractionated the hydrolysate obtained into components with distribution of molecular weight (2 kDa; 2 kDa) using UMBS. The fraction 2 kDa, with superior ACE inhibitory action (IC 50 of 0.615 mg/mL) was used as drink administered to renal hypertensive rats (RHR) for 30 days. Both the systolic and diastolic blood pressures in RHR were considerably reduced compared with the model group in a dose-dependent manner. Besides, the anti-hypertensive effect, at dosage of 120 μg/g, was as good as for the positive control, captopril (10 μg/g). Overall, it was noted that hydrolysate (GH-III) produced from sea cucumber gelatin has potent ACE inhibitory ( in vitro ) activity and anti-hypertensive ( in vivo ) effects which might have been due to presence of highly bioactive ACE inhibitory peptide.
In another study, Zhao et al. (2009), isolated a novel ACE inhibitory peptide from Acaudina molpadioidea hydrolysate. The hydrolysate produced was fractionated into two parts with molecular weight range (PH-I, >2 kDa; PH-II, <2 kDa) using an UMB. The PH-II fraction showed higher ACE inhibitory potential. From this PH-II fraction, using various chromatographic techniques (gel filtration, ion-exchange chromatography, RP-HPLC, etc. ), the researchers isolated an ACE inhibitory peptide. The peptide was further purified and established to be a novel one (sequenced as MEGAQEAQGD), showing negligible resemblance with other ACE inhibitory peptide sequences. After incubation with gastrointestinal proteases, the inhibitory action of the newly characterized peptide was observed to be enhanced by 3.5 times, corresponding to decrease in IC 50 from 15.9 to 4.5 μM. The tested ACE inhibitory peptide at dosage of 3 μM/kg demonstrated a remarkable anti-hypertensive effect in spontaneously hypertensive rats (SHR).
The antihypertensive and antioxidant activities ( in-vitro ) of two differently processed Icelandic sea cucumber tissues were evaluated and compared by Hamaguchi et al. (2010). The skin, muscle, digestive tract and respiratory tract of sea cucumber ( Cucumaria frondosa ) were processed in different ways yielding aqueous extract and hydrolyzates. The processed sea cucumber products were tested for reducing power, metal ion chelating activity, and ACE activity. According to the results, aqueous extracts, demonstrated higher ACE inhibition compared to the hydrolysates. Different parts of the tested sea cucumber also demonstrated varying magnitude of activities. On the other hand, hydrolysates (process 2) showed higher ORAC (oxygen radical absorbance capacity) values than the aqueous extracts (process 1). They suggested that the higher antioxidative activities of hydrolysates over aqueous extracted samples might be attributed to the presence of antioxidative peptides in addition to other endogenous bioactives in the former case.

Anti-Inflammatory

Studies support that sea cucumber possesses potent anti-inflammatory activity. According to Smith (1978), polian vesicles of sea cucumber ( Holothuria cinerascens ) are known to be the organs attributing inflammatory (including immunologic) receptiveness. As such, they might stand for a rudimentary start of what afterwards progressed into the vertebrate lymphoreticular system. There are also several patents which reveal that tissue fractions of sea cucumber can be exploited as a source of potent therapeutic agents for the treatment of inflammation. In an in vivo study, Whitehouse and Fairlie (1994) fed the rats of both (male and female) sexes with SeaCare (a human food supplement) composing of dried extracts from selected species of holothurians: 95% w/w sea cucumbers ( Holothuria nobilis , Holothuria axiologa and Stichopus variegatus ) and 5% w/w sea plant ( Sargassum pallidum ). The anti-inflammatory attributes were tested in rat models of inflammation. Their results indicate that the tested supplement exhibits anti-inflammatory action in both the sexes of rats; however its activity is somewhat lower than the synthetic standard compound (aspirin w/w) against the acute carrageenan-induced paw inflammation. The food supplement was found to be active against adjuvant-induced polyarthritis in rats on a daily dose schedule.
Extracts from sea cucumber species: ( Holothuria tubulosa , Leptogorgia ceratophyta , Coscinasterias tenuispina and Phallusia fumigata ) have been produced using dichloromethane and methanol by Herencia et al. (1998) to assess their anti-inflammatory activity. The results showed that the extracts, produced with both the solvents, were effective towards decreasing cyclo-oxygenase activity in inflamed mice tissues but did not modify the constitutive cyclo-oxygenase enzyme. Thus, the tested extracts can be explored as a new marine source for novel anti-inflammatory agents.

Antimikroba

Sea cucumber extracts have been proven as potential antimicrobial agents in several studies. Antibacterial and antifungal activities of alcoholic extracts of Actinopyga echinites , Actinopyga miliaris , Holothuria atra and Holothuria scabra have been studied by Jawahar et al. (2002). The researchers found that except Bacillus sp., other strains namely Escherichia coli , Aeromonas hydrophila , Enterococcus sp., Pseudomonas aeruginosa , Klebsiella pneumoniae , Staphylococcus aureus , Salmonella typhi , and Vibrio harveyi , and fish-generated Aspergillus sp. were sensitive to the tested sea cucumber extracts. The antimicrobial potential of these extracts can be ascribed to the presence of antimicrobial agents, most probably, the steroidal sapogenins. Therefore, uses of sea cucumbers, as potential source, for isolation of antimicrobial agents can be suggested. In another study, Ridzwan et al. (1995) evaluated the antibacterial activity of the extracts from sea cucumbers harvested from coastal areas of Sabah (Malaysia) using in vitro tests. According to their results, both the extracts, the lipid fraction and methanol fraction, derived from sea cucumber species, Holothuria scabra , Holothuria atra and Bohadshia argus did not show considerable antibacterial action. However, PBS (phosphate-buffered saline) derived from B. argus and H. atra , exhibited significant antimicrobial activity and inhibited the growth of all the tested gram-negative and gram-positive bacteria. The extracts obtained from the outer part of Holothuria atra , compared to inner parts, showed weak antimicrobial action.
Antimicrobial activity of the extracts from different body parts of sea cucumber, ( Cucumaria frondosa ), the common starfish ( Asterias rubens ), and green sea urchin ( Strongylocentrotus droebachiensis ) has been examined by Haug et al.. The eggs from Cucumaria frondosa offered relatively higher antibacterial activity. Several tissues from A. rubens exhibited lysozyme-like action, whereas hemolytic activity being observed in almost all the species analyzed. Especially, the body wall has more powerful extracts. A wide variation of bioactivities among the extracts suggests that a variety of substances are capable of antimicrobial functionalities. Therefore, marine echinoderms can be explored as a sustainable natural source for the discovery of novel antibiotic compounds.
In another activity guided research by Kumar et al. (2007), methanol extract of sea cucumber ( Actinopyga lecanora ) showed promising antifungal activity, in vitro . A new triterpene glycoside, along with two known glycosides, named holothurin B and holothurin A, have been identified in n -butanol fractions using repeated column chromatographic fractionation process. Overall, holothurin B showed better in vitro antifungal activity against 20 fungal isolates tested including the strain ATCC. Sea cucumber ( Actinopyga lecanora ) - based natural products have been recognized to act as a promising source for isolation and identification of antifungal substances. Therefore, sea cucumber-derived holothurin B could be searched as a lead molecule for further development of a potent antifungal drug against infectious diseases. Farouk et al. (2007) isolated some bacterial strains from various tissues of the sea cucumber species, ( Holothuria atra ). The bacterial secretions and extracts showed an interesting antibacterial activity. Out of the thirty strains isolated, seven strains exhibited modest to high activity. Researchers also optimized the growth media to enhance the production of antibacterial peptides. Based on activity screening data, the species namely Klebsiella pneumoniae , Salmonella typhimurium , Proteus vulgaris and Escherichia coli were found to be the most sensitive organisms.
The crude extracts and pure fractions isolated from Holothuria polii (a Mediterranean sea cucumber), have shown concentration-dependent antifungal activity against some molds and yeasts as described by Ismail et al. (2008). According to the data generated, the strains of Aspergillus fumigatus were more sensitive to the tested fractions and extracts, whereas those from Trichophyton rubrum were less responsive. Besides the extracts, different bioactive compounds, most of them known as triterpene glycosides, have been isolated from sea cucumber offering antimicrobial activity. One of these bioactives, namely patagonicoside A, isolated from sea cucumber ( Psolus patagonicus ), is identified as disulfated tetrasaccharide using 1D and 2D NMR spectral information. Furthermore, it is reported that patagonicoside A has good antifungal activity against pathogenic fungus ( Cladosporium cucumerinum ). Two newly identified sulfated triterpene glycosides, Hemoiedemosides A and B, from the Patagonian sea cucumber ( Hemoiedema spectabilis ) exhibited considerable antifungal activity against phytopathogenic fungus ( Cladosporium cucumerinum ), while the semi-synthetic desulfated derivative hemoiedemosides A was relatively less active.
Some secondary metabolites, characterized as triterpene glycosides, from sea cucumber ( Psolus patagonicus ) using a combination of chemical and chromatographic techniques have offered considerable antifungal potential. The purified fractions, mostly comprising of patagonicoside A, showed stronger antifungal action. In comparison with an effective synthetic antifungal product, sea cucumber-derived patagonicoside A and its derivative, for example, desulfated glycoside (ds-patagonicoside A), has comparable antifungal action against molds, Fusarium oxysporum , Cladosporium fulvum , and Monilia sp.. Yuan et al. (2009) also reported antifungal activity of four newly identified holostan-type triterpene glycosides, 17α-hydroxy impatienside A, marmoratoside A, marmoratoside B, 25-acetoxy bivittoside D, together with two previously known triterpene glycosides, (impatienside A and bivittoside D), isolated from ( Bohadschia marmorata ) species of sea cucumber. They elucidated the structures of the new triterpene glycosides using spectroscopic data, produced by two-dimensional NMR (2-D NMR) and other biochemical methods. Now the emergence of resistance of bacteria to commonly used synthetic antimicrobial (antibacterial and antifungal) drugs as a result of long-term drug therapy is a common phenomenon. Based upon the antimicrobial potential as revealed by several studies, it would be interesting to explore sea cucumbers as a natural source for isolation of novel antimicrobial agents for drug development against infectious diseases.

Antioksidan

Currently, use of plants or marine-based natural antioxidant compounds has gained much recognition due to their potential health functions and multiple biological properties. Thousands of plants species have already been researched for potential antioxidants; however due to lack of exploration, much potential remains for screening marine organisms for their antioxidant principles. Sea cucumber is one of the marine organisms that can be explored as a potential source of valuable antioxidants.
The antioxidant potential of fresh and rehydrated sea cucumber ( Cucumaria frondosa ) with/without internal organs has been evaluated by Zhong et al. (2007). The tested sea cucumber exhibited radicals scavenging properties. The rehydrated samples, especially those with internal organs, possessed higher antioxidant activity than their fresh counterparts. According to the findings of this study, poor correlation existed between radical scavenging capacity and total phenolics content, suggesting that other components, in addition to phenolic compounds, could have contributed to the antioxidant activity of sea cucumber. Meanwhile, Zeng et al. (2007) reported the antioxidant activity of gelatin hyrolysates from sea cucumber, ( Paracaudina chilensis ). In this study the gelatin was hydrolyzed by bromelain and then using ultrafiltration membrane separated into two major molecular weight fractions (greater than and less than 5 kDa). The hydrolysates tested scavenged the superoxide anion radicals to significant level. A rabbit liver mitochondrial free radical damage model was used for in vivo activity trials. Owing to reasonable radical scavenging potential, sea cucumber gelatin hydrolysate prevented the damage of rabbit liver and mitochondria. The antioxidant activity of sea cucumber-derived peptides has been confirmed by Chenghui et al. (2007). They separated sea cucumber hydrolysate into different molecular weight fractions by the methods of ultrafiltration and lyophilization. The results showed that peptides, with molecular weight of 1000~3000 u, exhibited greater antioxidant and scavenging effect on DPPH, even higher than the positive control, Vitamin E.
Total phenolics and total flavonoids contents, and antioxidant activity of the extracts from different parts of Atlantic sea cucumber ( Cucumaria frondosa ) have been assessed by Mamelona et al. (2007). Of the tested extracts, ethyl acetate-extracted components, belonging to digestive tract, showed relatively higher antioxidant activity, while water extracts derived from digestive tract and respiratory apparatus have the least. A good correlation existed between the data of ORAC (oxygen radical absorbance capacity) and total phenolic contents of the extracts/fractions of muscles and gonads. Similarly, ORAC and total flavonoids data showed good correlation ( p < 0.05) in all experiments. The results of this study showed that C. frondosa tissues contained relatively higher levels of natural antioxidants and can be used to prevent lipid oxidation reactions, especially those initiated by free radicals and reactive oxygen species. Hence, sea cucumbers can be a useful natural source for dietary antioxidants. In another investigation, the antioxidant activity and nutritional composition of protein hydrolysates from Atlantic sea-based freez-dried sea cucumber, Cucumaria frondosa , has been demonstrated. The hydrolysates tested contained high level of protein (55%), and essential amino acids (35% of total amino acids) along with an impressive nitrogen solubility index (68%). The hydrolysates also indicated significant antioxidant efficacy in both ORAC (267–421 μmol TE/g) and inhibition of lipid oxidation (54–57%) assays, which might be linked to the presence of antioxidant peptides. Atlantic sea-based species of sea cucumber and green sea urchin byproducts could be used as a source of dietary proteins, with potential antioxidant peptides.
A polypeptide isolated from sea cucumber through ultrafiltration and lyophilization methods exhibited effective antioxidant activity when tested on the hydroxyl and superoxide anion radicals. Similarly, the antiproliferative and in vitro antioxidant properties of organic extract (OE) and aqueous extract (AE) from sea cucumbers, Holothuria leucospilota , Holothuria scabra and Stichopus chloronotus have been examined by Althunibat et al. (2009). The results indicate that AE of H. leucospilota has the highest amount of total phenolics (9.70 mg GAE/g extract), while the OE of H. scabra contained the least (1.53 mg GAE/g extract). Also the AE of S. chloronotus scavenged DPPH free radical (IC 50 = 2.13 mg/mL) more effectively while AE (50 mg/mL) from H. scabra , H. leucospilota and S. chloronotus exhibited superior antioxidant activity (77.46%, 64.03% and 80.58%, respectively) in terms of linoleic acid peroxidation. A wide variation of antioxidant components and activities among the analyzed sea cucumber species, have been recorded. Relatively, AE have shown better antioxidant attributes than the OE, supporting that majority of the sea cucumber antioxidant components might have been hydrophilic in nature. It is understandable that the tested sea cucumber species can be employed as a useful source for isolation of natural antioxidant and anticancer agents. According to research work by Wang et al. (2010), a gelatin hydrolysate with molecular weight, 700–1700 Da, prepared from sea cucumber ( Stichopus japonicus ) body wall, scavenged the superoxide and hydroxyl radicals in a concentration-dependent manner. The tested gelatin hydrolysate also showed very good inhibitory effect against melanin synthesis and tyrosinase activity in B16 cells. In a similar study Huihui et al. (2010) evaluated the free radical scavenging ability of functional polypeptides of sea cucumber ( Acaudina molpadioides ), produced through optimized enzymatic hydrolysis process. In this study more than 70% of the free radicals were scavenged, IC 50 value for scavenging hydroxyl and superoxide anion free radicals were 27.8 mg/mL, 49.3 mg/mL, respectively. Peptides with molecular weight distribution less than 5 kDa exhibited greater ability to scavenge the free radicals. Besides, there are also other studies which demonstrate that the coelomic fluid from sea cucumber is a good source of antioxidants.

Anti-Thrombotic

A unique sulfated polysaccharide, extracted from sea cucumber ( Leptopentacta grisea ) body wall has been found to be a strong inhibitor of both P- and L-selectins. This study also supports the findings of a previous work by Zancan and Mourao (2004), that the sulfated fucose branches are required for the anticoagulant and antithrombotic activities of fucosylated chondroitin sulfate (FucCS). The antithrombotic and anticoagulant activities of depolymerized fragment (DHG) of glycosaminoglycan extracted from sea cucumber ( Stichopus japonicas ) (FGAG) have been compared with those of unfractionated heparin (UFH) or low molecular weight heparin (LMWH) by Suzuki et al. (1991). DHG at levels greater than 0.3 mg/kg iv significantly prevented the death of mice treated with thrombin (800 U/kg iv). Under the same conditions, FGAG, UFH and LMWH prevented the death of mice at dosage higher than 0.3, 0.3 and 0.6 mg/kg iv, respectively. These results suggest that sea cucumber-derived DHG-1 is a promising antithrombotic agent having quite different anticoagulant property from that of UFH or LMWH.
Another study by Li et al. (2000) revealed the antithrombotic effects of sea cucumber-derived glycosaminoglycan (GAG). In this experiment, the effect of GAG on the factors such as assembly, dispersion, and fibrin gel structure and functionality of plasmin was appraised with the aid of electron microscopic and biochemical and chromogenic assays. Besides, the influences of GAG expression and transcription of tissue factor and thrombomodulin in lipopolysaccharide-stimulated human umbilical vein endothelial cells (HUVECs) were also observed. The results of this study reveal that the function of GAG is analogous to dermatan sulfate, both in terms of efficacy and mechanism of antithrombin. Furthermore, it has been shown that coltlysis by GAG is controlled by its capacity to enhance plasmin activity, in order to inhibit the polymerization of fibrin monomer, consequently altering the fibrin network architecture. It can be claimed that such an effect on HUVECs materializes at a transcriptional level and thus might be responsible for the antithrombotic attributes of GAG. The findings of this study suggest that sea cucumber-derived GAG possesses anticoagulant activity in vivo and can be used as a promising drug for antithrombotic therapy.

Antitumor

Sea cucumbers contain a variety of anti-tumor ingredients. These anti-tumor active components play important roles in different stages of tumor development, progression and metastasis. The exploration of anti-tumor active ingredients from sea cucumbers might open windows of opportunities to discover new antitumor agents from other marine sources for clinical tumor treatment. Triterpene glycosides, namely holothurinosides A, B, C and D as well as desholothurin A from sea cucumber ( Holothuria forskali ), have considerable antitumor activity. Holothurinosides A and B are the first non-sulfated pentasaccharide saponins isolated from marine echinoderms while C and D are the di and tetrasaccharides. Sea cucumber-derived holothurinosides A–D and the related saponin have shown antitumor and antiviral activities. Holothurinosides A and desholothurin A are the most effective with IC 50 values of 0.46 and 0.38 mg/mL, respectively against P388 cell lines. Similarly, five new saponins (holothurinosides A–D ) isolated from the aqueous-methanolic extract of sea cucumber ( Holothuria forskali ) have also offered considerable antitumor and antiviral activities.
According to another research report, the glycoproteins obtained from the body wall of sea cucumber ( Mensamaria intercedens ) could significantly inhibit the growth of Sarcoma 180 cells implanted subcutaneously in mice ( p = 0.05) at dosage of 20–30 mg/kg per day ×10 with no sign of toxicity. Six newly isolated triterpene glycosides, intercedensides D–I, from the whole body of sea cucumber ( Mensamria intercedens ), have shown good antitumor activity. Chemical and spectroscopic (NMR and ESIMS) structural elucidation demonstrated that intercedensides D, E, G, and H have conjugated double bond system (22 Z ,24-diene) in the aglycon side chain, while intercedensides F and I, contained only a single double bond in the same chain. Lntercedensides D–H has displayed considerably high cytotoxicity (ED 50 0.96–5.0 mg/mL) against human tumor cell lines. The effect of philinopside A, a novel sulfated saponin derived from sea cucumber ( Pentacta quadrangulari ) on the angiogenesis and tumor growth have been studied by Tong et al. (2005) using different in vitro and in vivo models. The results revealed that philinopside A has high anti-tumor activity in both the in vivo and in vitro trials.
According to Ogushi et al. (2006), when human colon adenocarcinoma Caco-2 cells were exposed to hot water extract of sea cucumber ( Stichopus japonicus ), certain morphological changes occurred in the extract-treated cells. The researchers in this study demonstrated the induction of apoptosis using phosphatidylserine translocation (APO Percentage Assay kit), terminal deoxynucleotide transferase-mediated dUTP-biotin nick-end labeling (TUNEL), and DNA fragmentation as DNA ladder. The data showed that apoptosis is induced by a high molecular weight fraction in a dose dependent manner. It could be predicted that water extracted (water-soluble) and higher molecular weight compounds of sea cucumber might exhibit anti-tumor activity by triggering apoptosis, and the apoptosis-inducing activity may contribute to cancer chemopreventive effects of sea cucumber.
In another experiment conducted by Zhang et al. (2006), active n -BuOH extract of sea cucumber, ( Holothuria fuscocinerea ) was fractionated resulting in isolation of three new triterpene glycosides, fuscocinerosides A, B, and C, along with two known glycosides, pervicoside C and holothurin A. Structural elucidation, using spectral and chemical data showed that all the compounds possessed the same tetrasaccharide moiety, 3- O -methyl-β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl- (1→4)-β-D-quinovopyranosyl-(1→2)-4- O -sodiumsulfato-β-D-xylopyranosyl, linked to C-3 of holostane triterpene aglycones that differed in their side chains and 17-substituents. All the tested glycosides exhibited considerable cytotoxicity in vitro against human tumor cell lines. Wu et al. (2006), elucidated the structure of three newly isolated triterpene glycosides (nobilisides A, B and C) from sea cucumber, ( Holothuria nobilis ). Various spectral and chemical analyses were performed to deduce the chemical structures of the compounds isolated. Their results revealed that compounds A and C are non-sulfated monoglycosides while B is a sulfated diglycoside. All the three glycosides exhibited notable cytotoxic effects against human tumor cells. In their next study, they identified hillasides A and B, as new triterpene glycosides, in sea cucumber ( Holothuria hilla ) along with a previously known glycoside, holothuria B. They found that occurrence of conjugated double bonds [22 E ,24-diene] in the aglycone of hillasides A is a unique structural feature among sea cucumber glycosides. Both of the newly identified glycosides showed appreciable cytotoxic potential against tumor cell lines in human.
Recently, a new cytotoxic lanostane-type triterpene glycoside from the sea cucumber ( Holothuria impatiens ) has been isolated and structurally identified. The newly elucidated compound showed in vitro cytotoxicity, even better than that of an anticancer drug etoposide (V-16) against seven human tumor cells. In a recent investigation, Lu et al. (2009) evaluated the antitumor activity of Stichopus japonicus acid ingredients mucopolysaccharide (SJAMP) involving animal experimental trials. Their results revealed SJAMP to be a potential antitumor agent. SJAMP is one of the important biologically active compounds identified in sea cucumber, ( Stichopus japonicas ). Based on the facts, sea cucumbers can be recommended as a medicated food with therapeutic functions during and after the treatment of certain tumors. Aminin et al. (2010) identified a new immunomodulatory lead compound, cumaside from sea cucumber ( Cucumaria japonica ). Chemically, cumaside is a complex of monosulfated triterpene glycosides and reveals antitumor activity against experimental mouse Ehrlich carcinoma in vivo.

Antiviral

There are evidences that sea cucumbers bioactives also have antiviral activity. The antiviral activity of Liouvillosides A and B, which are trisulfated triterpene glycosides, isolated from Antarctic sea cucumber ( Staurocucumis liouvillei ), have been examined by Maier et al. (2001) . Based on the results of activity-directed bioassays, both glycosides showed good antiviral activity against herpes simplex virus type 1 (HSV-1). Sea cucumber-derived fucosylated chondroitin sulfates (FCS), recognized as a type of sulfated polysacchahers, can inhibit human immunodeficiency virus (HIV) infection, thus suggesting potential utilization of these valuable marine invertebrates as a natural therapy against HIV disorders and AIDS (acquired immune deficiency syndrome).

Osteoarthritis

It is revealed that certain chemical compounds namely chondroitin, mucopolysaccharides and glucosamine, occurring in sea cucumbers, have beneficial effects in arthritis disorders. Researchers have shown that usage of sea cucumber is beneficial in maintaining prostaglandins balance thus helping out in the treatment of musculo-skeletal inflammatory disorders such as osteoarthritis, rheumatoid arthritis and spinal arthritis. Two types of fucan sulfates have been isolated from sea cucumber ( Stichopus japonicus ) body wall using chloroform/methanol solvent system. Both types of fucan sulfates tested inhibited the osteoclastogenesis in an in vitro assay. This suggests that these compounds derived from sea cucumber are strong inhibitors of osteoclastogenesis. Therefore, sea cucumber-derived chondroitin sulfate and other related marine compounds can be a useful folk remedy for curing joint-pain and arthritis. The intake of dried sea cucumber is medicinally effective in suppressing arthralgia.

Wound Healing

Sea cucumber and sea cucumber-based products are now becoming available in shelves of health food stores due to their therapeutic effects, in particular the wound healing functions (to speed recovery of sores, cuts and wounds on the skin, as well as internally for ulcers and other ailments that involve internal damage). It is believed that direct use of sea cucumber can reduce wound recovery time and help new tissue formation and regeneration in human just as the sea cucumber's ability to quickly regenerate its own body tissue when damaged. It is evident that sea cucumber ( Stichopus chloronotus ) fatty acids including arachidonic acid (AA C20:4), eicosapentaenoic acid (EPA C20:5), and docosahexaenoic acid (DHA C22:6) can play a potential role in tissue repair and wound healing. It has been revealed in the literature that the bottom sediment feeder sea cucumber can contain high contents of branched chain fatty acids (BCFA) to assist in the potential wound healing activity. An appreciable amount of EPA in sea cucumbers  might be linked well with the ability of these echinoderms to initiate tissue repair. EPA is known to be the main active compound in fish oils, and exerts its function by means of prostaglandin inhibition and anti-thrombic attribute. Besides, EPA also plays a potential role in the mechanism of blood-clotting



















IV.             KESIMPULAN


Adapun kesimpulan yang dapat diberikan adalah sebagai berikut:
1.      Teripang merupakan salah satu hewan laut yang memiliki banyak kandungan bahan aktif didalamnya.
2.      Bahan aktif yang terdapat dantaranya adalah anti angiugenik, anti kanker, anti koagulan, anti future immune, anti htpertension and angiohensin conriting enzyme, anti inflammatory, anti moikroba, anti oxidant, anti thrombotic, anti tumor, antiviral, osteococrthtis, wound healing.
3.      Bahan aktif pada teripang sangat berguna bagi kehidupan manusia diberbagai bidang.


































DAFTAR PUSTAKA


Althunibat et al .2009. In vitro antioxidant and antiproliferative activities of three Malaysian sea cucumber species. Eur. J. Sci. Res. 2009; 37 :376–387.
Berry. 1972, medicine from the sea. Inc. New york
Dahuri 2005 Dahuri R. 2005. Menggali Bahan Baku Obat di dalam Laut. Departemen Perikanan dan Kelautan. http://www/dkp
Harjono. 1987. Budidaya Teripang Suatuy Budidaya Bermasa Depan Cerah. Buletin Warta Mina. Ditjen Perikanan: Jakarta.
Herencia et al. .1998. Anti-inflammatory activity in mice of extracts from mediterranean marine invertebrates. Life Sci. 1998; 62 :115–120.
Janakiram et al. 2010. Chemopreventive effects of frondanol A5, a Cucumaria frondosa extract, against rat colon carcinogenesis and inhibition of human colon cancer cell growth. Cancer Prev. Res. 2010; 3 :82–91.
Jawahar et al. .2002. Antimicrobial substances of potential biomedical importance from holothurian species. Indian J. Mar. Sci. 2002; 31 :161–164.
Maier et al. 2001. Two new cytotoxic and virucidal trisulfated triterpene glycosides from the Antarctic sea cucumber Staurocucumis liouvillei . J. Nat. Prod. 2001; 64 :732–736.
Mulloy et al .2000. Structure/function studies of anticoagulant sulphated polysaccharides using NMR. J. Biotechnol. 2000; 77 :123–135.
Nessa, MN. 1987. Perkembangan Perikanan Teripang di Bagian Barat Sulawesi. Makalah Seminar Laut: Jakarta.
Riani, Etty, Khaswar Syamsu dan Kaseno. 2008. Pemanfaatan Steroid Teripang Sebagai Aprodisiaka Alami dan untuk Pengembangan Budidaya Perikanan. Laporan Eksekutif Hibah Penelitan Pascasarjana- HPTP. ITB.
Silchenko et al. 2007. Constituents of the sea cucumber Cucumaria okhotensis . Structures of okhotosides B1–B3 and cytotoxic activities of some glycosides from this species. J. Nat. Prod. 2007; 71 :351–356.
Smith .1978. A proposed phylogenetic relationship between sea cucumber Polian vesicles and the vertebrate lymphoreticular system. J. Invertebr. Pathol. 1978; 31 :353–357.
Suzuki et al. 1991. Antithrombotic and anticoagulant activity of depolymerized fragment of the glycosaminoglycan extracted from Stichopus japonicus Selenka. Thromb. Haemost. 1991; 65 :369–373.
Tian et al. 2005. a new sulfated saponin from sea cucumber, blocks the interaction between kinase insert domain-containing receptor (KDR) and αvβ3 integrin via binding to the extracellular domain of KDR. Mol. Pharmacol. 2007; 72 :545–552.
Tong et al. 2005. a novel marine-derived compound possessing dual anti-angiogenic and anti-tumor effects. Int. J. Cancer. 2005; 114 :843–853.
Wu et al. .2010. Free-radical depolymerization of glycosaminoglycan from sea cucumber Thelenata ananas by hydrogen peroxide and copper ions. Carbohydr. Polym. 2010; 8 :1116–1124
Yusuf, 2008. Perbaikan Kualitas Produk Industri Kecil Teripang. Jurnal Sains dan Teknologi Indonesia Vol.2, No.3, (Juni 2000), Hal. 52-55
Zhao et al. .2007. Differential effects of sulfated triterpene glycosides, holothurin A1, and 24-Dehydroechinoside A, on antimetastasic activity via regulation of the MMP-9 signal pathway. J. Food Sci. ; 75 :280–288.
Zhong et al. 2007. Compositional characteristics and antioxidant properties of fresh and processed sea cucumber ( Cucumaria frondosa ) J. Agric. Food Chem. 2007; 55 :1188–1192.

Tidak ada komentar: